As the co-efficients are in reverse order, the roots of $$a{x^2} + bx + c = 0$$ are $$\alpha ,\beta ,$$ while the roots of $$c{x^2} + bx + a = 0$$ are $$\frac{1}{\alpha },\frac{1}{\beta }.$$
One negative root is common
$$\eqalign{
& \Rightarrow \,\,\left( {\text{i}} \right)\alpha = \frac{1}{\alpha } < 0;\,{\text{so, }}\alpha = - 1 \cr
& {\text{or, }}\left( {{\text{ii}}} \right)\alpha = \frac{1}{\beta } < 0 \cr
& \Rightarrow \,\,\alpha \beta = 1 \cr
& \Rightarrow \,\,\frac{c}{a} = 1 \cr
& \Rightarrow \,\,c = a\left( {{\text{not possible}}} \right). \cr} $$
23.
If $$a, b, c$$ are non-zero, unequal rational numbers then the roots of the equation $$ab{c^2}{x^2} + \left( {3{a^2} + {b^2}} \right)cx - 6{a^2} - ab + 2{b^2} = 0$$ are
24.
If $$X$$ denotes the set of real numbers $$p$$ for which the equation $${x^2} = p\left( {x + p} \right)$$ has its roots greater than $$p$$ then $$X$$ is equal to
$${\sin ^2}\frac{x}{2} \cdot {\cos ^2}x = \frac{{x + \frac{1}{x}}}{2} \geqslant \sqrt {x \cdot \frac{1}{x}} = 1,$$ equality will hold when $$x = \frac{1}{x}.$$
$$\therefore \,\,{\sin^2}\frac{x}{2} \cdot {\cos ^2}x = 1\,\,{\text{and then }}x = \frac{1}{x},\,{\text{i}}{\text{.e}}{\text{., }}x = 1$$ for which the equation is not satisfied.
28.
The number of solutions of the equation $$\left| x \right| = \cos x$$ is