11. If $$b > a,$$  then the equation $$\left( {x - a} \right)\left( {x - b} \right) - 1 = 0\,\,{\text{has}}$$

A both roots in $$(a, b)$$
B both roots in $$\left( { - \infty ,a} \right)$$
C both roots in $$\left( {b, + \infty } \right)$$
D one root in $$\left( { - \infty ,a} \right)$$  and the other in $$\left( {b, + \infty } \right)$$
Answer :   one root in $$\left( { - \infty ,a} \right)$$  and the other in $$\left( {b, + \infty } \right)$$
Discuss Question

12. If $$x$$ be real and $$b < c,$$  then $$\frac{{{x^2} - bc}}{{2x - b - c}}$$   lies in

A $$\left( {b,c} \right)$$
B $$\left[ {b,c} \right]$$
C $$\left( { - \infty ,b} \right] \cup \left[ {c,\infty } \right)$$
D $$\left( { - \infty ,b} \right) \cup \left( {c,\infty } \right)$$
Answer :   $$\left( { - \infty ,b} \right] \cup \left[ {c,\infty } \right)$$
Discuss Question

13. The number of real solutions of the equation $${\log _{0.5}}x = \left| x \right|$$   is

A 1
B 2
C 0
D none of these
Answer :   1
Discuss Question

14. Suppose the quadratic equations $$x^2 + px + q = 0$$    and $$x^2 + rx + s = 0$$    are such that $$p, q, r , s$$   are real and $$pr = 2(q + s).$$   Then

A Both the equations always have real roots
B At least one equation always has real roots
C Both the equation always have non real roots
D At least one equation always has real and equal roots
Answer :   At least one equation always has real roots
Discuss Question

15. If the roots of the equation $$ax^2 – bx + c = 0$$    are $$\alpha , \beta$$  then the roots of the equation $${b^2}c{x^2} – a{b^2}x + {a^3} = 0$$     are

A $$\frac{1}{{{\alpha ^3} + \alpha \beta }},\frac{1}{{{\beta ^3} + \alpha \beta }}$$
B $$\frac{1}{{{\alpha ^2} + \alpha \beta }},\frac{1}{{{\beta ^2} + \alpha \beta }}$$
C $$\frac{1}{{{\alpha ^4} + \alpha \beta }},\frac{1}{{{\beta ^4} + \alpha \beta }}$$
D None of these
Answer :   $$\frac{1}{{{\alpha ^2} + \alpha \beta }},\frac{1}{{{\beta ^2} + \alpha \beta }}$$
Discuss Question

16. If $$ab = 2a + 3b, a > 0, b > 0$$      then the minimum value of $$ab$$ is

A $$12$$
B $$24$$
C $$\frac{1}{4}$$
D None of these
Answer :   $$24$$
Discuss Question

17. If $$p{x^2} + qx + r = 0$$    has no real roots and $$p, q, r$$  are real such that $$p + r > 0$$   then

A $$p - q + r < 0$$
B $$p - q + r >0$$
C $$p + r = q$$
D all of these
Answer :   $$p - q + r >0$$
Discuss Question

18. If the roots of $$ax^2 + bx + c = 0$$    are the reciprocals of those of $$\ell {x^2} + mx + n = 0$$    then $$a : b : c =$$

A $$n : m : \ell$$
B $$\ell : m : n$$
C $$m : n : \ell$$
D $$n : \ell : m$$
Answer :   $$n : m : \ell$$
Discuss Question

19. If $$\left( {{\lambda ^2} + \lambda - 2} \right){x^2} + \left( {\lambda + 2} \right)x < 1$$       for all $$x \in R$$  then $$\lambda $$ belongs to the interval

A $$\left( { - 2,1} \right)$$
B $$\left( { - 2,\frac{2}{5}} \right)$$
C $$\left( {\frac{2}{5},1} \right)$$
D None of these
Answer :   $$\left( { - 2,\frac{2}{5}} \right)$$
Discuss Question

20. If both the roots of the quadratic equation $${x^2} - 2kx + {k^2} + k - 5 = 0$$      are less than 5, then $$k$$ lies in the interval

A $$\left( {5,6} \right]$$
B $$\left( {6,\infty } \right)$$
C $$\left( { - \infty ,4} \right)$$
D $$\left[ {4,5} \right]$$
Answer :   $$\left( { - \infty ,4} \right)$$
Discuss Question


Practice More MCQ Question on Maths Section