11.
If $$\left( {2 + \sin \,x} \right)\frac{{dy}}{{dx}} + \left( {y + 1} \right)\cos \,x = 0$$ and $$y\left( 0 \right) = 1,$$ then $$y\left( {\frac{\pi }{2}} \right)$$ is equal to :
A
$$\frac{4}{3}$$
B
$$\frac{1}{3}$$
C
$$ - \frac{2}{3}$$
D
$$ - \frac{1}{3}$$
Answer :
$$\frac{1}{3}$$
View Solution
Discuss Question
We have
$$\eqalign{
& \left( {2 + \sin \,x} \right)\frac{{dy}}{{dx}} + \left( {y + 1} \right)\cos \,x = 0 \cr
& \Rightarrow \frac{d}{{dx}}\left( {2 + \sin \,x} \right)\left( {y + 1} \right) = 0 \cr} $$
On integrating, we get
$$\eqalign{
& \left( {2 + \sin \,x} \right)\left( {y + 1} \right) = C \cr
& {\text{At }}x = 0,y = 1\,\,{\text{we}}\,\,{\text{have}} \cr
& \left( {2 + \sin \,0} \right)\left( {1 + 1} \right) = C \cr
& \Rightarrow C = 4 \cr
& \Rightarrow y + 1 = \frac{4}{{2 + \sin \,x}} \cr
& y = \frac{4}{{2 + \sin \,x}} - 1 \cr
& {\text{Now }}y\left( {\frac{\pi }{2}} \right) = \frac{4}{{2 + \sin \,\frac{\pi }{2}}} - 1 \cr
& = \frac{4}{3} - 1 \cr
& = \frac{1}{3} \cr} $$
12.
The differential equation whose solution is $$A{x^2} + B{y^2} = 1,$$ where $$A$$ and $$B$$ are arbitrary constants is of-
A
second order and second degree
B
first order and second degree
C
first order and first degree
D
second order and first degree
Answer :
second order and first degree
View Solution
Discuss Question
$$\eqalign{
& A{x^2} + B{y^2} = 1\,.....(1) \cr
& Ax + By\frac{{dy}}{{dx}} = 0\,.....(2) \cr
& A + By\frac{{{d^2}y}}{{d{x^2}}} + B{\left( {\frac{{dy}}{{dx}}} \right)^2} = 0\,.....(3) \cr
& {\text{From}}\,\,(2)\,\,{\text{and}}\,\,(3) \cr
& x\left\{ { - By\frac{{{d^2}y}}{{d{x^2}}} + B{{\left( {\frac{{dy}}{{dx}}} \right)}^2}} \right\} + By\frac{{dy}}{{dx}} = 0 \cr} $$
Dividing both sides by $$-B,$$ we get
$$ \Rightarrow xy\frac{{{d^2}y}}{{d{x^2}}} + x{\left( {\frac{{dy}}{{dx}}} \right)^2} - y\frac{{dy}}{{dx}} = 0$$
Which is a DE of order 2 and degree 1.
13.
The differential equation which represents the family of curves $$y = {c_1}{e^{{c_2}x}},$$ where $${c_1},$$ and $${c_2}$$ are arbitrary constants, is
A
$$y'' = y'y$$
B
$$yy'' = y'$$
C
$$yy'' = {\left( {y'} \right)^2}$$
D
$$y' = {y^2}$$
Answer :
$$yy'' = {\left( {y'} \right)^2}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{We have }}y = {c_1}{e^{{c_2}x}} \cr
& \Rightarrow y' = {c_1}{c_2}\,{e^{{c_2}x}} = {c_2}y \cr
& \Rightarrow \frac{{y'}}{y} = {c_2} \cr
& \Rightarrow \frac{{y''y - {{\left( {y'} \right)}^2}}}{{{y^2}}} = 0 \cr
& \Rightarrow y''y = {\left( {y'} \right)^2} \cr} $$
14.
The differential equation of the curve $$\frac{x}{{c - 1}} + \frac{y}{{c + 1}} = 1$$ is given by :
A
$$\left( {\frac{{dy}}{{dx}} - 1} \right)\left( {y + x\frac{{dy}}{{dx}}} \right) = 2\frac{{dy}}{{dx}}$$
B
$$\left( {\frac{{dy}}{{dx}} + 1} \right)\left( {y - x\frac{{dy}}{{dx}}} \right) = \frac{{dy}}{{dx}}$$
C
$$\left( {\frac{{dy}}{{dx}} + 1} \right)\left( {y - x\frac{{dy}}{{dx}}} \right) = 2\frac{{dy}}{{dx}}$$
D
none of these
Answer :
$$\left( {\frac{{dy}}{{dx}} + 1} \right)\left( {y - x\frac{{dy}}{{dx}}} \right) = 2\frac{{dy}}{{dx}}$$
View Solution
Discuss Question
$$\eqalign{
& \frac{x}{{c - 1}} + \frac{y}{{c + 1}} = 1......\left( 1 \right) \cr
& \Rightarrow \frac{1}{{c - 1}} + \frac{{y'}}{{c + 1}} = 0......\left( 2 \right) \cr
& \Rightarrow \frac{{y'}}{1} = \frac{{c + 1}}{{1 - c}} \cr
& \Rightarrow \frac{{y' - 1}}{{y' + 1}} = c \cr
& {\text{Put the value of }}c{\text{ in equation}}\left( 1 \right) \cr
& \Rightarrow \frac{x}{{\frac{{y' - 1}}{{y' + 1}} - 1}} + \frac{y}{{\frac{{y' - 1}}{{y' + 1}} + 1}} = 1 \cr
& \Rightarrow \frac{{x\left( {y' + 1} \right)}}{{ - 2}} + \frac{{y\left( {y' + 1} \right)}}{{2y'}} = 1 \cr
& \Rightarrow \frac{{\left( {y' + 1} \right)}}{2}\left( {\frac{y}{{y'}} - x} \right) = 1 \cr
& \Rightarrow \left( {1 + \frac{{dy}}{{dx}}} \right)\left( {y - x\frac{{dy}}{{dx}}} \right) = 2\frac{{dy}}{{dx}} \cr} $$
15.
A curve passing through $$\left( {2,\,3} \right)$$ and satisfying the differential equation $$\int_0^x {ty\left( t \right)dt = {x^2}y\left( x \right),\,\left( {x > 0} \right)} {\text{ is}}\,{\text{:}}$$
A
$${x^2} + {y^2} = 13$$
B
$${y^2} = \frac{9}{2}x$$
C
$$\frac{{{x^2}}}{8} + \frac{{{y^2}}}{{18}} = 1$$
D
$$xy = c$$
Answer :
$$xy = c$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Differentiate }}xy\left( x \right) = {x^2}y'\left( x \right) + 2xy\left( x \right) \cr
& {\text{or }}xy\left( x \right) + {x^2}y'\left( x \right) = 0 \cr
& {\text{or }}x\frac{{dy}}{{dx}} + y = 0 \cr
& {\text{or }}\ln \,y + \ln \,x = \ln \,c \cr
& {\text{or }}xy = c \cr} $$
16.
The general solution of the differential equation $$\frac{{{d^2}y}}{{d{x^2}}} = \cos \,nx$$ is :
[Where $$C$$ and $$D$$ are arbitrary constants]
A
$${n^2}y + \cos \,nx = {n^2}\left( {Cx + D} \right)$$
B
$${n^2}y - \sin \,nx = {n^2}\left( { - Cx + D} \right)$$
C
$${n^2}y + \cos \,nx = \frac{{Cx + D}}{{{n^2}}}$$
D
none of these
Answer :
$${n^2}y + \cos \,nx = {n^2}\left( {Cx + D} \right)$$
View Solution
Discuss Question
The differential equation is $$\frac{{{d^2}y}}{{d{x^2}}} = \cos \,nx$$
Integrating we get
$$\frac{{dy}}{{dx}} = \frac{{\sin \,nx}}{n} + C.....\left( {\text{i}} \right)$$
Integrating again
$$\eqalign{
& y = - \frac{{\cos \,nx}}{{{n^2}}} + Cx + D \cr
& \Rightarrow {n^2}y + \cos \,nx = {n^2}\left( {Cx + D} \right) \cr} $$
17.
If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$ and $$y\left( 0 \right) = - 1,$$ then $$y\left( 1 \right)$$ is equal to-
A
$$ - \frac{1}{2}$$
B
$$e + \frac{1}{2}$$
C
$$e - \frac{1}{2}$$
D
$$\frac{1}{2}$$
Answer :
$$ - \frac{1}{2}$$
View Solution
Discuss Question
The given differential equation is
$$\eqalign{
& \frac{{dy}}{{dt}} - \frac{t}{{1 + t}}y = \frac{1}{{1 + t}} \cr
& {\text{I}}{\text{.F}}{\text{.}} = {e^{ - \int {\frac{t}{{1\, + \,t}}\,dt} }} = {e^{ - \int {\left( {1\, - \,\frac{t}{{1\, + \,t}}} \right)\,dt} }} = {e^{ - \left( {t\, - \,\log \,\left( {1\, + \,t} \right)} \right)}} \cr
& = {e^{ - t}}.{e^{\log \,\left( {1\, + \,t} \right)}} = \left( {1 + t} \right){e^{ - \,t}} \cr} $$
$$\therefore $$ Solution is
$$\eqalign{
& y.{e^{ - t}}\left( {1 + t} \right) = \int {\frac{1}{{\left( {1 + t} \right)}}{e^{ - t}}\left( {1 + t} \right)dt + C} \cr
& \Rightarrow y.{e^{ - t}}\left( {1 + t} \right) = - {e^{ - t}} + C \cr
& \Rightarrow y = - \frac{1}{{1 + t}} + \frac{{C{e^t}}}{{1 + t}} \cr
& {\text{Given that }}y\left( 0 \right) = - 1 \cr
& \Rightarrow - 1 = - 1 + C \cr
& \Rightarrow C = 0 \cr
& \therefore y = \frac{1}{{1 + t}} \cr
& \therefore y\left( 1 \right) = - \frac{1}{{1 + 1}} = - \frac{1}{2} \cr} $$
18.
If $$y = {\left( {x + \sqrt {1 + {x^2}} } \right)^n},$$ then $$\left( {1 + {x^2} } \right)\frac{{{d^2}y}}{{d{x^2}}} + x\frac{{dy}}{{dx}}{\text{ is :}}$$
A
$${n^2}y$$
B
$$ - {n^2}y$$
C
$$ - y$$
D
$$2{x^2}y$$
Answer :
$${n^2}y$$
View Solution
Discuss Question
$$\eqalign{
& y = {\left( {x + \sqrt {1 + {x^2}} } \right)^n} \cr
& \frac{{dy}}{{dx}} = n{\left( {x + \sqrt {1 + {x^2}} } \right)^{n - 1}}\left( {1 + \frac{1}{2}{{\left( {1 + {x^2}} \right)}^{ - \frac{1}{2}}},2x} \right)\,; \cr
& \frac{{dy}}{{dx}} = n{\left( {x + \sqrt {1 + {x^2}} } \right)^{n - 1}}\frac{{\left( {\sqrt {1 + {x^2}} + x} \right)}}{{\sqrt {1 + {x^2}} }} = \frac{{n{{\left( {\sqrt {1 + {x^2}} + x} \right)}^n}}}{{\sqrt {1 + {x^2}} }} \cr
& {\text{or }}\sqrt {1 + {x^2}} \frac{{dy}}{{dx}} = ny \cr
& {\text{or }}\sqrt {1 + {x^2}} {y_1} = ny\,\,\,\,\,\,\,\,\left( {{y_1} = \frac{{dy}}{{dx}}} \right) \cr
& {\text{Squaring, }}\left( {1 + {x^2}} \right)y_1^2 = {n^2}{y^2} \cr
& {\text{Differentiating,}} \cr
& \left( {1 + {x^2}} \right)2{y_1}{y_2} + y_1^2.2x = {n^2}.2y{y_1} \cr
& \left( {{\text{Here }}{y_2} = \frac{{{d^2}y}}{{d{x^2}}}} \right) \cr
& {\text{or }}\left( {1 + {x^2}} \right){y_2} + x{y_1} = {n^2}y \cr} $$
19.
The degree of differential equation satisfying the relation $$\sqrt {1 + {x^2}} + \sqrt {1 + {y^2}} = \lambda \left( {x\sqrt {1 + {y^2}} - y\sqrt {1 + {x^2}} } \right){\text{ is :}}$$
A
1
B
2
C
3
D
4
Answer :
1
View Solution
Discuss Question
$$\eqalign{
& \sqrt {1 + {x^2}} + \sqrt {1 + {y^2}} = \lambda \left( {x\sqrt {1 + {y^2}} - y\sqrt {1 + {x^2}} } \right) \cr
& \Rightarrow \sqrt {1 + {x^2}} \left( {1 + \lambda y} \right) = \sqrt {1 + {y^2}} \left( {\lambda x - 1} \right) \cr
& \Rightarrow \frac{{\sqrt {1 + {x^2}} }}{{\sqrt {1 + {y^2}} }} = \frac{{\lambda x - 1}}{{\lambda y + 1}} \cr
& \Rightarrow \frac{{{x^2} + 1}}{{{y^2} + 1}} = \frac{{{\lambda ^2}{x^2} - 2\lambda x + 1}}{{{\lambda ^2}{y^2} + 2\lambda y + 1}} \cr
& \Rightarrow \left( {{y^2} + 1} \right)\left( {{\lambda ^2}{x^2} - 2\lambda x + 1} \right) = \left( {{x^2} + 1} \right)\left( {{\lambda ^2}{y^2} + 2\lambda y + 1} \right) \cr
& \Rightarrow {\lambda ^2}{x^2}{y^2} - 2\lambda x{y^2} + {y^2} + {\lambda ^2}{x^2} - 2\lambda x + 1 = {\lambda ^2}{x^2}{y^2} + 2\lambda {x^2}y + {x^2} + {\lambda ^2}{y^2} + 2\lambda y + 1 \cr
& \Rightarrow {\lambda ^2}\left( {{x^2} - {y^2}} \right) - 2\lambda \left( {x{y^2} + {x^2}y + x + y} \right) = 0 \cr
& \Rightarrow {\lambda ^2}\left( {x + y} \right)\left( {x - y} \right) - 2\lambda \left[ {xy\left( {x + y} \right) + \left( {x + y} \right)} \right] = 0 \cr
& \Rightarrow \lambda \left( {x + y} \right)\left[ {\lambda \left( {x - y} \right) - 2xy - 2} \right] = 0 \cr
& \Rightarrow \left( {x + y} \right)\left[ {\lambda \left( {x - y} \right) - 2xy - 2} \right] = 0 \cr
& \Rightarrow \lambda \left( {x - y} \right) - 2xy - 2 = 0 \cr
& \Rightarrow \frac{{2xy + 2}}{{x - y}} = \lambda \cr
& \Rightarrow \frac{{xy + 1}}{{x - y}} = \frac{\lambda }{2} \cr
& \Rightarrow \frac{{\left( {x\frac{{dy}}{{dx}} + y} \right)\left( {x - y} \right) - \left( {xy + 1} \right)\left( {1 - \frac{{dy}}{{dx}}} \right)}}{{{{\left( {x - y} \right)}^2}}} = 1 \cr} $$
This is the first order differential equation and clearly degree of $$\frac{{dy}}{{dx}}$$ is 1. Hence degree of the differential equation is 1.
20.
What is the solution of the equation $$\ln \left( {\frac{{dy}}{{dx}}} \right) + x = 0\,?$$
A
$$y + {e^x} = c$$
B
$$y - {e^{ - x}} = c$$
C
$$y + {e^{ - x}} = c$$
D
$$y - {e^x} = c$$
Answer :
$$y + {e^{ - x}} = c$$
View Solution
Discuss Question
Consider the given differential equation
$$\eqalign{
& \ln \left( {\frac{{dy}}{{dx}}} \right) + x = 0 \cr
& \Rightarrow \ln \left( {\frac{{dy}}{{dx}}} \right) = - x \cr
& \Rightarrow \frac{{dy}}{{dx}} = {e^{ - x}} \cr} $$
on separating the variables, we get $$dy = {e^{ - x}}dx,$$
on integrating both sides, we get
$$\eqalign{
& \int {dy = \int {{e^{ - x}}dx} } \cr
& \Rightarrow y = \frac{{{e^{ - x}}}}{{ - 1}} + C \cr
& \Rightarrow y = - {e^{ - x}} + C \cr
& \Rightarrow y + {e^{ - x}} = C \cr} $$