EMMCQ.com
Maths
Physics
Chemistry
Biology
Engineering Exams
JEE Main
JEE Advanced
WBJEE
MHTCET
BITSAT
VITEEE
COMEDK
GUJCET
KEAM
Medical Exams
NEET UG
Definite Integration MCQ Questions & Answers in Calculus | Maths
Home
Maths
Calculus
Definite Integration
81.
The value of $$\int\limits_0^1 {\frac{{8\log \left( {1 + x} \right)}}{{1 + {x^2}}}} dx,$$ is-
A
$$\frac{\pi }{8}\log \,2$$
B
$$\frac{\pi }{2}\log \,2$$
C
$$\log\,2$$
D
$$\pi \,\log \,2$$
Answer :
$$\pi \,\log \,2$$
View Solution
Discuss Question
$$\eqalign{ & I = \int\limits_0^1 {\frac{{8\log \left( {1 + x} \right)}}{{1 + {x^2}}}} dx \cr & {\text{Put}}\,x = \tan \,\theta , \cr & \therefore \frac{{dx}}{{d\theta }} = {\sec ^2}\theta \Rightarrow dx = {\sec ^2}\theta \,d\theta \cr & \therefore I = 8\int\limits_0^{\frac{\pi }{4}} {\frac{{\log \left( {1 + \tan \,\theta } \right)}}{{1 + {{\tan }^2}\theta }}} .{\sec ^2}\theta \,d\theta \cr & I = 8\int\limits_0^{\frac{\pi }{4}} {\log \left( {1 + \tan \,\theta } \right)} \,d\theta .....{\text{(i)}} \cr & = 8\int\limits_0^{\frac{\pi }{4}} {\log \left[ {1 + \tan \,\left( {\frac{\pi }{4} - \theta } \right)} \right]} d\theta \cr & = 8\int\limits_0^{\frac{\pi }{4}} {\log \left[ {1 + \frac{{1 - \tan \,\theta }}{{1 + \tan \,\theta }}} \right]} d\theta \cr & = 8\int\limits_0^{\frac{\pi }{4}} {\log \left[ {\frac{2}{{1 + \tan \,\theta }}} \right]d\theta } \cr & = 8\int\limits_0^{\frac{\pi }{4}} {\left[ {\log 2 - \log \left( {1 + \tan \,\theta } \right)} \right]d\theta } \cr & I = 8.\left( {\log \,2} \right)\left[ x \right]_0^{\frac{\pi }{4}} - 8\int\limits_0^{\frac{\pi }{4}} {\log \left( {1 + \tan \,\theta } \right)d\theta } \cr & I = 8.\frac{\pi }{4}.\log \,2 - I\,\,\,\,\left[ {{\text{from equation (i)}}} \right] \cr & \Rightarrow 2I = 2\pi \,\log \,2, \cr & \therefore I = \pi \,\log \,2 \cr} $$
82.
For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$ has the value-
A
$$\pi $$
B
$$1$$
C
$$0$$
D
none of these
Answer :
$$0$$
View Solution
Discuss Question
$$\eqalign{ & I = \int_0^\pi {{e^{{{\cos }^2}x\,}}\,} {\cos ^3}\left( {2n + 1} \right)x\,dx,\,n \in \,Z.....(1) \cr & = \int_0^\pi {{e^{{{\cos }^2}\left( {\pi - x} \right)}}} \,{\cos ^3}\left[ {\left( {2n + 1} \right)\left( {\pi - x} \right)} \right]dx \cr & {\text{Using }}\int_0^a {f\left( x \right)dx = } \int_0^a {f\left( {a - x} \right)dx} \cr & \therefore I = \int_0^\pi {{e^{{{\cos }^2}x}}} \,{\cos ^3}\left[ {\left( {2n + 1} \right)\pi - \left( {2n + 1} \right)x} \right]dx \cr & I = \int_0^\pi {\left( { - {e^{{{\cos }^2}x}}\,{{\cos }^3}} \right)\left( {2n + 1} \right)x\,dx.....(2)} \cr & {\text{Adding (1) and (2) we get}} \cr & 2I = 0\,\,\,\, \Rightarrow I = 0 \cr} $$
83.
The function $$f\left( x \right) = \int\limits_{ - 1}^x {t\left( {{e^t} - 1} \right)\left( {t - 1} \right){{\left( {t - 2} \right)}^3}{{\left( {t - 3} \right)}^5}dt} $$ has a local minimum at $$x = ?$$
A
0
B
1, 3
C
2
D
None of these
Answer :
1, 3
View Solution
Discuss Question
$$\eqalign{ & \frac{{dy}}{{dx}} = f'\left( x \right) \cr & \Rightarrow x\left( {{e^x} - 1} \right)\left( {x - 1} \right){\left( {x - 2} \right)^3}{\left( {x - 3} \right)^5} = 0 \cr} $$
Critical points are $$0,\,1,\,2,\,3$$
Consider change of sign of $$\frac{{dy}}{{dx}}$$ at $$x = 3.$$
$$x < 3,\,\frac{{dy}}{{dx}} = $$ negative and $$x > 3,\,\frac{{dy}}{{dx}} = $$ positive
Change is from negative to positive, hence minimum at $$x = 3.$$ Again minimum and maximum occur alternately.
$$\therefore $$ 2nd minimum is at $$x = 1.$$
84.
$$\mathop {Lim}\limits_{n \to \infty } \sum\limits_{r = 1}^n {\frac{1}{n}{e^{\frac{r}{n}}}} $$ is-
A
$$e + 1$$
B
$$e - 1$$
C
$$1 - e$$
D
$$e$$
Answer :
$$e - 1$$
View Solution
Discuss Question
$$\mathop {Lim}\limits_{n \to \infty } \sum\limits_{r = 1}^n {\frac{1}{n}{e^{\frac{r}{n}}}} $$
[Using definite integrals as limit of sum]
$$ = \int\limits_0^1 {{e^x}dx = e - 1} $$
85.
The value of $$\int_0^\pi {\ln \left( {1 + \cos \,x} \right)} dx$$ is :
A
$$\frac{\pi }{2}\log \,2$$
B
$$\pi \,\log \,2$$
C
$$ - \pi \,\log \,2$$
D
$$0$$
Answer :
$$ - \pi \,\log \,2$$
View Solution
Discuss Question
$$\eqalign{ & I = \int_0^\pi {\log \left( {1 + \cos \,x} \right)} dx \cr & = \int_0^\pi {\log \left( {2\,{{\cos }^2}\frac{x}{2}} \right)} dx \cr & = \int_0^\pi {\left( {\log \,2 + 2\,\log \,\cos \frac{x}{2}} \right)} dx \cr & = \int_0^\pi {\log \,2\,dx + 2\int_0^\pi {\log \,\cos \frac{x}{2}dx} } \cr & = \pi \,\log \,2 + 2\int_0^{\frac{\pi }{2}} {\left( {2\,\log \,\cos \,t} \right)} dt\,\,\,\,\,\left( {{\text{where }}\frac{x}{2} = t} \right) \cr & = \pi \,\log \,2 + 4\left( { - \frac{\pi }{2}\log \,2} \right) \cr & = \pi \,\log \,2 - 2\pi \,\log \,2 \cr & = - \pi \,\log \,2 \cr & \left[ {\int_0^{\frac{\pi }{2}} {\log \,\sin \,\theta \,d\theta = } \int_0^{\frac{\pi }{2}} {\log \,\cos \,\theta \,d\theta } = - \frac{\pi }{2}\log \,2} \right] \cr} $$
86.
The value of $$I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\left( {\sin \,x + \cos \,x} \right)}^2}}}{{\sqrt {1 + \sin \,2x} }}dx} ,$$ is-
A
$$3$$
B
$$1$$
C
$$2$$
D
$$0$$
Answer :
$$2$$
View Solution
Discuss Question
$$\eqalign{ & I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\left( {\sin \,x + \cos \,x} \right)}^2}}}{{\sqrt {1 + \sin \,2x} }}dx} \cr & {\text{We know }}\left[ {{{\left( {\sin \,x + \cos \,x} \right)}^2} = 1 + \sin \,2x} \right],{\text{ so}} \cr & I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\left( {\sin \,x + \cos \,x} \right)}^2}}}{{\left( {\sin \,x + \cos \,x} \right)}}dx} \cr & {\text{or }}\,I = \int\limits_0^{\frac{\pi }{2}} {\left( {\sin \,x + \cos \,x} \right)dx} \cr & \left[ {\because \,\sin \,x + \cos \,x > 0\,\,if\,0 < x < \frac{x}{2}} \right] \cr & {\text{or }}\,I = \left[ { - \cos \,x + \sin \,x} \right]_0^{\frac{\pi }{2}} = 2 \cr} $$
87.
The value of the integral $$I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} $$ is-
A
$$\frac{1}{{n + 1}} + \frac{1}{{n + 2}}$$
B
$$\frac{1}{{n + 1}}$$
C
$$\frac{1}{{n + 2}}$$
D
$$\frac{1}{{n + 1}} - \frac{1}{{n + 2}}$$
Answer :
$$\frac{1}{{n + 1}} - \frac{1}{{n + 2}}$$
View Solution
Discuss Question
$$\eqalign{ & I = \int\limits_0^1 {x{{\left( {1 - x} \right)}^n}dx} \cr & = \int\limits_0^1 {\left( {1 - x} \right){{\left( {1 - 1 + x} \right)}^n}dx} \cr & = \int\limits_0^1 {\left( {1 - x} \right){x^n}dx} \cr & = \left[ {\frac{{{x^{n + 1}}}}{{n + 1}} - \frac{{{x^{n + 2}}}}{{n + 2}}} \right]_0^1 \cr & = \frac{1}{{n + 1}} - \frac{1}{{n + 2}} \cr} $$
88.
$$\mathop {{\text{Lim}}}\limits_{n \to \infty } {\left\{ {\frac{{n!}}{{{{\left( {kn} \right)}^n}}}} \right\}^{\frac{1}{n}}},$$ where $$k \ne 0$$ is a constant and $$n\, \in \,{\bf{N}}$$ is equal to :
A
$$ke$$
B
$${k^{ - 1}}e$$
C
$$k{e^{ - 1}}$$
D
$${k^{ - 1}}{e^{ - 1}}$$
Answer :
$${k^{ - 1}}{e^{ - 1}}$$
View Solution
Discuss Question
Let $$P = \mathop {{\text{Lim}}}\limits_{n \to \infty } {\left\{ {\frac{{n!}}{{{{\left( {kn} \right)}^n}}}} \right\}^{\frac{1}{n}}}$$
Taking $$\log $$ of both the sides at the base $$e$$
$$\eqalign{ & {\log _e}P = \mathop {{\text{Lim}}}\limits_{n \to \infty } \frac{1}{n}{\log _e}\left\{ {\frac{{n!}}{{{{\left( {kn} \right)}^n}}}} \right\} \cr & = \mathop {{\text{Lim}}}\limits_{n \to \infty } \frac{1}{n}{\log _e}\left\{ {\frac{1}{{kn}}.\frac{2}{{kn}}.\frac{3}{{kn}}......\frac{n}{{kn}}} \right\} \cr & = \mathop {{\text{Lim}}}\limits_{n \to \infty } \frac{1}{n}\left[ {\log \left( {\frac{1}{{kn}}} \right) + \log \left( {\frac{2}{{kn}}} \right) + ...... + \log \left( {\frac{n}{{kn}}} \right)} \right] \cr & = \mathop {{\text{Lim}}}\limits_{n \to \infty } \frac{1}{n}\sum\limits_{r = 1}^n {\log \left( {\frac{r}{{kn}}} \right)} \cr & = \int\limits_0^1 {\log } \left( {\frac{x}{k}} \right)dx \cr & = \int\limits_0^1 {\left( {\log \,x - \log \,k} \right)dx} \cr & = \int\limits_0^1 {\log } \,x\,dx - \int\limits_0^1 {\log \,k\,dx} \cr & = \left[ {x\,\log \,x - x} \right]_0^1 - \log \,k\left[ x \right]_0^1 \cr & = \left[ {0 - 1 - 0 + 0} \right] - \log \,k \cr & = - 1 - \log \,k \cr & = - \left( {\log \,e + \log \,k} \right) \cr & = - \log \left( {ek} \right) \cr & = \log \frac{1}{{ek}} \cr & \left[ {{\text{Value of}}\,x\,\log \,x\,{\text{at}}\,x = 0\,{\text{is}}\,\mathop {{\text{Lim}}}\limits_{x \to {0^ + }} x\,\log \,x = 0} \right] \cr & \therefore \,P = \frac{1}{{ek}} = {k^{ - 1}}{e^{ - 1}} \cr} $$
89.
The value of the integral $$\int\limits_{{e^{ - 1}}}^{{e^2}} {\left| {\frac{{{{\log }_e}x}}{x}} \right|dx} ,$$ is:
A
$$\frac{3}{2}$$
B
$$\frac{5}{2}$$
C
$$3$$
D
$$5$$
Answer :
$$\frac{5}{2}$$
View Solution
Discuss Question
$${\text{Let }}I = \int_{{e^{ - 1}}}^{{e^2}} {\left| {\frac{{{{\log }_e}x}}{x}} \right|dx} $$
We know that for $$\frac{1}{e} < x < 1,\,{\log _e}x < 0$$ and hence $$\frac{{{{\log }_e}x}}{x} < 0$$
and for $$1 < x < {e^2},\log \,x > 0$$ and hence $$\frac{{{{\log }_e}x}}{x} > 0$$
$$\eqalign{ & \therefore I = \int_{\frac{1}{e}}^1 {\left[ { - \frac{{{{\log }_e}\,x}}{x}} \right]dx + } \int_1^{{e^2}} {\frac{{{{\log }_e}\,x}}{x}dx} \cr & = - \frac{1}{2}\left[ {{{\left( {{{\log }_e}\,x} \right)}^2}} \right]_{\frac{1}{e}}^1 + \frac{1}{2}\left[ {{{\left( {{{\log }_e}\,x} \right)}^2}} \right]_1^{{e^2}} \cr & = \frac{1}{2} + 2 \cr & = \frac{5}{2} \cr} $$
90.
$$\int_0^2 {\sqrt {\frac{{2 + x}}{{2 - x}}} dx} $$ is equal to :
A
$$\pi + 1$$
B
$$1 + \frac{\pi }{2}$$
C
$$\pi + \frac{3}{2}$$
D
none of these
Answer :
none of these
View Solution
Discuss Question
$$\eqalign{ & {\text{Put }}x = 2\cos \,2\theta \cr & {\text{Then }}I = \int_{\frac{\pi }{4}}^0 {\cot \,\theta .\left( { - 4\sin \,2\theta } \right)d\theta } \cr & \therefore \,I = 8\int_0^{\frac{\pi }{4}} {{{\cos }^2}\theta \,d\theta } \cr & = 4\int_0^{\frac{\pi }{4}} {\left( {1 + \cos \,2\theta } \right)} d\theta \cr & = 4\left[ {\theta + \frac{{\sin \,2\theta }}{2}} \right]_0^{\frac{\pi }{4}} \cr & = 4\left[ {\frac{\pi }{4} + \frac{1}{2}} \right] \cr & = \pi + 2 \cr} $$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Practice More MCQ Question on
Maths
Section
Algebra
Sequences and Series
Quadratic Equation
Complex Number
Matrices and Determinants
Permutation and Combination
Binomial Theorem
Mathematical Induction
Mathematical Reasoning
Statistics and Probability
Statistics
Probability
Calculus
Sets and Relations
Function
Limits
Continuity
Differentiability and Differentiation
Application of Derivatives
Differential Equations
Indefinite Integration
Definite Integration
Application of Integration
Geometry
Straight Lines
Circle
Parabola
Ellipse
Hyperbola
Locus
3D Geometry and Vectors
Three Dimensional Geometry
Trigonometry
Trigonometric Ratio and Identities
Trignometric Equations
Properties and Solutons of Triangle
Inverse Trigonometry Function