36.
If $$f\left( x \right) = A\,\sin \left( {\frac{{\pi x}}{2}} \right) + B$$ and $$f'\left( {\frac{1}{2}} \right) = \sqrt 2 $$ and $$\int_0^1 {f\left( x \right)dx = \frac{{2A}}{\pi },} $$ then what is the value of $$B\,?$$
37.
Let $$f:R \to R$$ and $$g:R \to R$$ be continuous functions. Then the value of the integral $$\int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]} \left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx$$ is-
We have,
$$\eqalign{
& I = \int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]} \left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx \cr
& {\text{Let }}F\left( x \right) = \left( {f\left( x \right) + f\left( { - x} \right)} \right)\left( {g\left( x \right) - g\left( { - x} \right)} \right) \cr
& {\text{then }}F\left( { - x} \right) = \left( {f\left( { - x} \right) + f\left( x \right)} \right)\left( {g\left( { - x} \right) - g\left( x \right)} \right) \cr
& = - \left[ {f\left( x \right) + f\left( { - x} \right)} \right]\left[ {g\left( x \right) - g\left( { - x} \right)} \right] \cr
& = - F\left( x \right) \cr} $$
$$\therefore F\left( x \right)$$ is an odd function,
$$\therefore $$ We get $$I=0$$
38.
Let $$f:{\bf{R}} \to {\bf{R}}$$ and $$g:{\bf{R}} \to {\bf{R}}$$ be continuous functions. Then the value of $$\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left\{ {f\left( x \right) + f\left( { - x} \right)} \right\}\left\{ {g\left( x \right) - g\left( { - x} \right)} \right\}} dx{\text{ is :}}$$
Given integral is $$I = \int_0^1 {\left( {x - 1} \right){e^{ - x}}dx} $$
Integrating by parts taking $$\left( {x - 1} \right)$$ as first function
We get,
$$\eqalign{
& I = \left[ {\left( {x - 1} \right)\left\{ { - {e^{ - x}}} \right\}} \right]_0^1 - \int_0^1 {1.\left( { - {e^{ - x}}} \right)dx} \cr
& = - \left( {1 - 1} \right)\frac{1}{e} + \left( { - 1} \right){e^0} + \left[ { - {e^{ - x}}} \right]_0^1 \cr
& = - 1 - \frac{1}{e} + 1 \cr
& = - \frac{1}{e} \cr} $$
40.
Let $$f\left( x \right)$$ be a function satisfying $$f'\left( x \right) = f\left( x \right)$$ with $$f\left( 0 \right) = 1$$ and $$g\left( x \right)$$ be a function that satisfies $$f\left( x \right) + g\left( x \right) = {x^2}.$$ Then the value of the integral $$\int\limits_0^1 {f\left( x \right)\,g\left( x \right)dx,} $$ is-