51.
If $$af\left( x \right) + bf\left( {\frac{1}{x}} \right) = \frac{1}{x} - 5,\,x \ne 0,\,a \ne b,$$ then $$\int_1^2 {f\left( x \right)dx} $$ equals :
A
$$\frac{{\left( {\log \,2 - 5} \right)a + \frac{{13}}{2}b}}{{{a^2} - {b^2}}}$$
B
$$\frac{{\left( {\log \,2 - 5} \right)a + \frac{{7b}}{2}}}{{{a^2} - {b^2}}}$$
C
$$\frac{{\left( {5 - \log \,2} \right)a + \frac{{7b}}{2}}}{{{a^2} - {b^2}}}$$
D
none of these
Answer :
$$\frac{{\left( {\log \,2 - 5} \right)a + \frac{{7b}}{2}}}{{{a^2} - {b^2}}}$$
View Solution
Discuss Question
$$\eqalign{
& af\left( x \right) + bf\left( {\frac{1}{x}} \right) = \frac{1}{x} - 5 \cr
& \Rightarrow af\left( {\frac{1}{x}} \right) + bf\left( x \right) = x - 5 \cr
& {\text{From these, }}\left( {{a^2} - {b^2}} \right)f\left( x \right) = a\left( {\frac{1}{x} - 5} \right) - b\left( {x - 5} \right) \cr
& \therefore \,\int_1^2 {f\left( x \right)dx} = \int_1^2 {\frac{1}{{{a^2} - {b^2}}}\left\{ {\frac{a}{x} - bx - 5a + 5b} \right\}dx} \cr
& = \frac{1}{{{a^2} - {b^2}}}\left[ {a\log \,x - b\frac{{{x^2}}}{2} + 5\left( {b - a} \right)x} \right]_1^2 \cr
& = \frac{{a\log \,2 - 2b + 10\left( {b - a} \right) + \frac{b}{2} - 5\left( {b - a} \right)}}{{{a^2} - {b^2}}} \cr} $$
52.
$$\int\limits_0^\infty {\frac{{dx}}{{\left( {{x^2} + {a^2}} \right)\left( {{x^2} + {b^2}} \right)}}} {\text{ is ?}}$$
A
$$\frac{{\pi ab}}{{a + b}}$$
B
$$\frac{\pi }{{2\left( {a + b} \right)}}$$
C
$$\frac{\pi }{{2ab\left( {a + b} \right)}}$$
D
$$\frac{{\pi \left( {a + b} \right)}}{{2ab}}$$
Answer :
$$\frac{\pi }{{2ab\left( {a + b} \right)}}$$
View Solution
Discuss Question
$$\eqalign{
& \int\limits_0^\infty {\frac{{dx}}{{\left( {{x^2} + {a^2}} \right)\left( {{x^2} + {b^2}} \right)}}} \cr
& {\text{ = }}\frac{1}{{{b^2} - {a^2}}}\int\limits_0^\infty {\frac{{\left( {{x^2} + {b^2}} \right) - \left( {{x^2} + {a^2}} \right)}}{{\left( {{x^2} + {a^2}} \right)\left( {{x^2} + {b^2}} \right)}}} \cr
& {\text{ = }}\frac{1}{{{b^2} - {a^2}}}\int\limits_0^\infty {\left[ {\frac{1}{{{x^2} + {a^2}}} - \frac{1}{{{x^2} + {b^2}}}} \right]dx} \cr
& {\text{ = }}\frac{1}{{{b^2} - {a^2}}}\left[ {\frac{1}{a}{{\tan }^{ - 1}}\frac{x}{a} - \frac{1}{b}{{\tan }^{ - 1}}\frac{x}{b}} \right]_0^\infty \cr
& {\text{ = }}\frac{1}{{{b^2} - {a^2}}}\left[ {\frac{\pi }{{2a}} - \frac{\pi }{{2b}}} \right] \cr
& {\text{ = }}\frac{\pi }{{2ab\left( {a + b} \right)}} \cr} $$
53.
$$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 0}^{n - 1} {\frac{1}{{\sqrt {{n^2} - {r^2}} }}} $$ is :
A
$$\pi $$
B
$$\frac{\pi }{2}$$
C
$$\frac{\pi }{4}$$
D
none of these
Answer :
$$\frac{\pi }{2}$$
View Solution
Discuss Question
$$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 0}^{n - 1} {\frac{1}{n}.\frac{1}{{\sqrt {1 - {{\left( {\frac{r}{n}} \right)}^2}} }}} = \int_0^1 {\frac{{dx}}{{\sqrt {1 - {x^2}} }} = \left[ {{{\sin }^{ - 1}}x} \right]_0^1 = \frac{\pi }{2}} $$
54.
The value of integral, $$\int\limits_3^6 {\frac{{\sqrt x }}{{\sqrt {9 - x} + \sqrt x }}dx} ,$$ is-
A
$$\frac{1}{2}$$
B
$$\frac{3}{2}$$
C
$$2$$
D
$$1$$
Answer :
$$\frac{3}{2}$$
View Solution
Discuss Question
$$\eqalign{
& I = \int\limits_3^6 {\frac{{\sqrt x }}{{\sqrt {9 - x} + \sqrt x }}dx} .....(1) \cr
& I = \int\limits_3^6 {\frac{{\sqrt {9 - x} }}{{\sqrt {9 - x} + \sqrt x }}dx} .....(2) \cr
& \left[ {{\text{using }}\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)dx} } \right] \cr} $$
using equation (1) and (2)
$$2I = \int\limits_3^6 {dx} = 3\,\, \Rightarrow I = \frac{3}{2}$$
55.
Let $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,} $$ where $$f$$ is such that $$\frac{1}{2} \leqslant f\left( t \right) \leqslant 1,$$ for $$t \in \left[ {0,\,1} \right]$$ and $$0 \leqslant f\left( t \right) \leqslant \frac{1}{2},$$ for $$t \in \left[ {1,\,2} \right]$$
Then $$g\left( 2 \right)$$ satisfies the inequality -
A
$$ - \frac{3}{2} \leqslant g\left( 2 \right) < \frac{1}{2}$$
B
$$0 \leqslant g\left( 2 \right) < 2$$
C
$$\frac{3}{2} < g\left( 2 \right) \leqslant \frac{5}{2}$$
D
$$2 < g\left( 2 \right) < 4$$
Answer :
$$0 \leqslant g\left( 2 \right) < 2$$
View Solution
Discuss Question
$$\eqalign{
& g\left( x \right) = \int\limits_0^x {f\left( t \right)dt} \cr
& \Rightarrow g\left( 2 \right) = \int\limits_0^2 {f\left( t \right)dt} = \int\limits_0^1 {f\left( t \right)dt} + \int\limits_1^2 {f\left( t \right)dt} \cr
& {\text{Now,}}\,\frac{1}{2} \leqslant f\left( t \right) \leqslant 1\,{\text{for }}t \in \left[ {0,\,1} \right] \cr
& {\text{We get }}\int\limits_0^1 {\frac{1}{2}dt} \leqslant \int\limits_0^1 {f\left( t \right)dt} \leqslant \int\limits_0^1 {1dt} \cr} $$
(applying line integral on inequality)
$$\eqalign{
& \Rightarrow \frac{1}{2} \leqslant \int\limits_0^1 {f\left( t \right)dt} \leqslant 1.....(1) \cr
& {\text{Again, 0}} \leqslant f\left( t \right) \leqslant \frac{1}{2}\,{\text{for }}t \in \left[ {1,\,2} \right] \cr
& {\text{We get }}\int\limits_1^2 {0dt} \leqslant \int\limits_1^2 {f\left( t \right)dt} \leqslant \int\limits_1^2 {\frac{1}{2}dt} \cr} $$
(applying line integral on inequality)
$$ \Rightarrow 0 \leqslant \int\limits_1^2 {f\left( t \right)dt} \leqslant \frac{1}{2}.....(2)$$
From (1) and (2), we get
$$\frac{1}{2} \leqslant \int\limits_0^1 {f\left( t \right)dt} + \int\limits_1^2 {f\left( t \right)dt} \leqslant \frac{3}{2}\,\,{\text{or}}\,\,\frac{1}{2} \leqslant g\left( 2 \right) \leqslant \frac{3}{2}$$
$$ \Rightarrow 0 \leqslant g\left( 2 \right) \leqslant 2$$ is the most appropriate solution.
56.
If $${A_n} = \int\limits_0^{\frac{\pi }{2}} {\frac{{\sin \left( {2n - 1} \right)x}}{{\sin \,x}}dx} \,;\,{B_n} = \int\limits_0^{\frac{\pi }{2}} {{{\left( {\frac{{\sin \,nx}}{{\sin \,x}}} \right)}^2}dx} \,;$$
For $$n\, \in \,{\bf{N}},$$ then :
A
$${A_{n + 1}} = {A_n},\,{B_{n + 1}} - {B_n} = {A_{n + 1}}$$
B
$${B_{n + 1}} = {B_n}$$
C
$${A_{n + 1}} - {A_n} = {B_{n + 1}}$$
D
None of these
Answer :
$${A_{n + 1}} = {A_n},\,{B_{n + 1}} - {B_n} = {A_{n + 1}}$$
View Solution
Discuss Question
We have,
$$\eqalign{
& {A_{n + 1}} - {A_n} = \int\limits_0^{\frac{\pi }{2}} {\frac{{\sin \left( {2n + 1} \right)x - \sin \left( {2n - 1} \right)x}}{{\sin \,x}}dx} \cr
& = \int\limits_0^{\frac{\pi }{2}} {\frac{{2\,\cos \,2nx\,\sin \,x}}{{\sin \,x}}dx} \cr
& = 2\int\limits_0^{\frac{\pi }{2}} {\cos \,2n\pi \,dx} \cr
& = 0 \cr} $$
Again,
$$\eqalign{
& {B_{n + 1}} - {B_n} = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^2}\left( {n + 1} \right)x - {{\sin }^2}nx}}{{{{\sin }^2}x}}dx} \cr
& = \int\limits_0^{\frac{\pi }{2}} {\frac{{\sin \left( {2n + 1} \right)x\,\sin \,x}}{{{\sin^2} \,x}}dx} \cr
& = {A_{n + 1}} \cr} $$
57.
If $$\int\limits_0^\pi {x\,f\left( {\sin \,x} \right)} dx = A\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin \,x} \right)} dx,$$ then $$A$$ is-
A
$$2\pi $$
B
$$\pi $$
C
$$\frac{\pi }{4}$$
D
$$0$$
Answer :
$$\pi $$
View Solution
Discuss Question
$$\eqalign{
& {\text{Let }}I = \int\limits_0^\pi {x\,f\left( {\sin \,x} \right)} dx = \int\limits_0^\pi {\left( {\pi - x} \right)\,f\left( {\sin \,x} \right)} dx \cr
& \therefore 2I = \pi \int\limits_0^\pi {f\left( {\sin \,x} \right)} dx = \pi .2\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin \,x} \right)} dx \cr
& \therefore I = \pi \int\limits_0^{\frac{\pi }{2}} {f\left( {\sin \,x} \right)} dx\,\,\,\,\,\, \Rightarrow A = \pi \cr} $$
58.
$$\int\limits_0^\infty {\left[ {\frac{2}{{{e^x}}}} \right]} dx$$ is equal to ( $$\left[ x \right] = $$ greatest integer $$ \leqslant x$$ )
A
$${\log _e}2$$
B
$${e^2}$$
C
$$0$$
D
$$\frac{2}{e}$$
Answer :
$${\log _e}2$$
View Solution
Discuss Question
$$\eqalign{
& {\text{We have, if }}{e^x} > 2,\,\frac{2}{{{e^x}}} < 1 \cr
& {\text{Also, }}\frac{2}{{{e^x}}} > 0 \Rightarrow 0 < \frac{2}{{{e^x}}} < 1 \cr
& \therefore \,{\text{If }}x > {\log _e}2,\,\left[ {\frac{2}{{{e^x}}}} \right] = 0 \cr
& {\text{Again if }}0 < x < {\log _e}2{\text{ then }}1 < {e^x} < 2 \cr
& \Rightarrow 1 > \frac{1}{{{e^x}}} > \frac{1}{2} \cr
& \Rightarrow 2 > \frac{2}{{{e^x}}} > 1{\text{ or }}1 < \frac{2}{{{e^x}}} < 2 \cr
& \therefore \,\left[ {\frac{2}{{{e^x}}}} \right] = 1 \cr
& \therefore \,I = \int\limits_0^\infty {\left[ {\frac{2}{{{e^x}}}} \right]dx} \cr
& = \int\limits_0^\infty {\left[ {2{e^{ - x}}} \right]} dx \cr
& = \int\limits_0^{\log \,2} {\left[ {2{e^{ - x}}} \right]dx} + \int\limits_{\log \,2}^\infty {\left[ {2{e^{ - x}}} \right]} dx \cr
& = \int\limits_0^{\log \,2} {\left( 1 \right)dx} + \int\limits_{\log \,2}^\infty {\left( 0 \right)} dx \cr
& = {\log _e}2 \cr} $$
59.
Let $$I = \int\limits_0^1 {\frac{{\sin \,x}}{{\sqrt x }}dx} $$ and $$J = \int\limits_0^1 {\frac{{\cos \,x}}{{\sqrt x }}dx.} $$ Then which one of the following is true?
A
$$I > \frac{2}{3}{\text{ and }}J > 2$$
B
$$I < \frac{2}{3}{\text{ and }}J < 2$$
C
$$I < \frac{2}{3}{\text{ and }}J > 2$$
D
$$I > \frac{2}{3}{\text{ and }}J < 2$$
Answer :
$$I < \frac{2}{3}{\text{ and }}J < 2$$
View Solution
Discuss Question
$$\eqalign{
& {\text{We know that }}\frac{{\sin \,x}}{x} < 1,\,{\text{for }}x\, \in \left( {0,\,1} \right) \cr
& \Rightarrow \frac{{\sin \,x}}{{\sqrt x }} < \sqrt x {\text{ on }}x\, \in \left( {0,\,1} \right) \cr
& \Rightarrow \int\limits_0^1 {\frac{{\sin \,x}}{{\sqrt x }}dx < } \int\limits_0^1 {\sqrt x \,dx = \left[ {\frac{{2{x^{\frac{3}{2}}}}}{3}} \right]_0^1} \cr
& \Rightarrow \int\limits_0^1 {\frac{{\sin \,x}}{{\sqrt x }}dx < } \frac{2}{3} \cr
& \Rightarrow I < \frac{2}{3}{\text{ Also }}\frac{{\cos \,x}}{{\sqrt x }} < \frac{1}{{\sqrt x }}\,\,{\text{for }}x\, \in \left( {0,\,1} \right) \cr
& \Rightarrow \int\limits_0^1 {\frac{{\cos \,x}}{{\sqrt x }}dx < \int\limits_0^1 {{x^{ - \frac{1}{2}}}} dx = \left[ {2\sqrt x } \right]_0^1 = 2} \cr
& \Rightarrow \int\limits_0^1 {\frac{{\cos \,x}}{{\sqrt x }}dx < 2} \,\,\, \Rightarrow J < 2 \cr} $$
60.
Let $$F\left( x \right) = f\left( x \right) + f\left( {\frac{1}{x}} \right),$$ where $$f\left( x \right) = \int\limits_l^x {\frac{{\log \,t}}{{1 + t}}dt.} $$ Then $$F\left( e \right)$$ equals :
A
$$1$$
B
$$2$$
C
$$\frac{1}{2}$$
D
$$0$$
Answer :
$$\frac{1}{2}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Given, }}F\left( x \right) = f\left( x \right) + f\left( {\frac{1}{x}} \right), \cr
& {\text{where }}f\left( x \right) = \int_1^x {\frac{{\log \,t}}{{1 + t}}dt} \cr
& \therefore \,F\left( e \right) = f\left( e \right) + f\left( {\frac{1}{e}} \right) \cr
& \Rightarrow F\left( e \right) = \int_1^e {\frac{{\log \,t}}{{1 + t}}dt} + \int_1^{\frac{1}{e}} {\frac{{\log \,t}}{{1 + t}}dt} ......\left( {\text{A}} \right) \cr
& {\text{Now for solving, }}I = \int_1^{\frac{1}{e}} {\frac{{\log \,t}}{{1 + t}}dt} \cr
& \therefore \,{\text{Put }}\frac{1}{t} = z \Rightarrow - \frac{1}{{{t^2}}}dt = dz \Rightarrow dt = - \frac{{dz}}{{{z^2}}} \cr
& {\text{and limit for }}t = 1 \Rightarrow z = 1{\text{ and for }}t = \frac{1}{e} \Rightarrow z = e \cr
& \therefore \,I = \int_1^e {\frac{{\log \left( {\frac{1}{z}} \right)}}{{1 + \frac{1}{z}}}\left( { - \frac{{dz}}{{{z^2}}}} \right)} \cr
& \Rightarrow I = \int_1^e {\frac{{\left( {\log \,1 - \log \,z} \right).z}}{{z + 1}}\left( { - \frac{{dz}}{{{z^2}}}} \right)} \cr
& \Rightarrow I = \int_1^e { - \frac{{\log \,z}}{{\left( {z + 1} \right)}}\left( { - \frac{{dz}}{{{z^2}}}} \right)} \cr
& \Rightarrow I = \int_1^e {\frac{{\log \,z}}{{z\left( {z + 1} \right)}}dz} \cr
& \therefore \,I = \int_1^e {\frac{{\log \,t}}{{t\left( {t + 1} \right)}}dt} \cr
& {\text{Equation}}\left( {\text{A}} \right){\text{ becomes :}} \cr
& F\left( e \right) = \int_1^e {\frac{{\log \,t}}{{1 + t}}dt + \int_1^e {\frac{{\log \,t}}{{t\left( {1 + t} \right)}}dt} } \cr
& \Rightarrow F\left( e \right) = \int_1^e {\frac{{t.\log \,t + \log \,t}}{{t\left( {1 + t} \right)}}dt} \cr
& \Rightarrow F\left( e \right) = \int_1^e {\frac{{\left( {\log \,t} \right)\left( {t + 1} \right)}}{{t\left( {1 + t} \right)}}dt} \cr
& \Rightarrow F\left( e \right) = \int_1^e {\frac{{\log \,t}}{t}dt} \cr
& {\text{Let }}\log \,t = x \cr
& \therefore \,\frac{1}{t}dt = dx \cr
& \left[ {{\text{for limit }}t = 1,{\text{ }}x = 0{\text{ and }}t = e,\,x = \log \,e = 1} \right] \cr
& \therefore \,F\left( e \right) = \int_0^1 {x\,dx} \cr
& \Rightarrow F\left( e \right) = \left[ {\frac{{{x^2}}}{2}} \right]_0^1 \cr
& \Rightarrow F\left( e \right) = \frac{1}{2} \cr} $$