$$\eqalign{
& \frac{{1 + z}}{{1 + \overline z }} = \frac{{z\overline z + z}}{{1 + \overline z }}\left( {\because \,\,\left| z \right| = 1\, \Rightarrow \,{{\left| z \right|}^2} = 1\,\, \Rightarrow \,z\overline z = 1} \right) \cr
& \frac{{1 + z}}{{1 + \overline z }} = \frac{{z\left( {\overline z + 1} \right)}}{{1 + \overline z }} = z. \cr} $$
63.
If $$\alpha $$ is non-real and $$\alpha = \root 5 \of 1 $$ then the value of $${2^{\left| {1 + \alpha + {\alpha ^2} + {\alpha ^{ - 2}} - {\alpha ^{ - 1}}} \right|}}$$ is equal to
64.
Let $$S$$ be the set of all complex numbers $$z$$ satisfying $$\left| {z - 2 + i} \right|\, \geqslant \sqrt 5 .$$ If the complex number $${z_0}$$ is such that $$\frac{1}{{\left| {{z_0} - 1} \right|}}$$ is the maximum of the set $$\left\{ {\frac{1}{{\left| {z - 1} \right|}}:z \in S} \right\},$$ then the principal argument of $$\frac{{4 - {z_0} - {{\overline z }_0}}}{{{z_0} - {{\overline z }_0} + 2i}}$$ is
$$\eqalign{
& \left| {z - 1} \right| = \left| {z + 1} \right| \cr
& \Rightarrow \,\,{\left( {x - 1} \right)^2} + {y^2} = {\left( {x + 1} \right)^2} + {y^2} \cr} $$
⇒ $$x = 0 ,$$ which represents a straight line. Note $$\left| {\frac{{z - \alpha }}{{z - \beta }}} \right| = k,$$ where $$\alpha ,\beta $$ are complex constants, represents a straight
line if $$k = 1.$$
70.
If $${x^3} - 1 = 0$$ has the non-real complex roots $$\alpha ,\beta $$ then the value of $${\left( {1 + 2\alpha + \beta } \right)^3} - {\left( {3 + 3\alpha + 5\beta } \right)^3}$$ is