11. Let $$\lambda \in {\bf{R}}.$$  If the origin and the non real roots of $$2z^2 + 2z + \lambda = 0$$    form the three vertices of an equilateral triangle in the argand plane. Then $$\lambda$$ is

A $$1$$
B $$\frac{2}{3}$$
C $$2$$
D $$- 1$$
Answer :   $$\frac{2}{3}$$
Discuss Question

12. If $$z_1 , z_2$$  and $$z_3$$ are complex numbers such that $$\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = \left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1,$$        then $$\left| {{z_1} + {z_2} + {z_3}} \right|$$   is

A equal to 1
B less than 1
C greater than 3
D equal to 3
Answer :   equal to 1
Discuss Question

13. $$z_1$$ and $$z_2$$ are the roots of $${3z^2} +3z + b = 0.$$    If $$O\left( 0 \right),A\left( {{z_1}} \right),B\left( {{z_2}} \right)$$    form an equilateral triangle, then the value of $$b$$ is

A $$- 1$$
B $$1$$
C $$0$$
D does not exist
Answer :   $$1$$
Discuss Question

14. The points $$z_1, z_2 , z_3, z_4$$   in a complex plane are vertices of a parallelogram taken in order, then

A $${z_1} + {z_4} = {z_2} + {z_3}$$
B $${z_1} + {z_3} = {z_2} + {z_4}$$
C $${z_1} + {z_2} = {z_3} + {z_4}$$
D None of these
Answer :   $${z_1} + {z_3} = {z_2} + {z_4}$$
Discuss Question

15. If $$z$$ is a complex number such that $$\left| z \right| \geqslant 2,$$  then the minimum value of $$\left| {z + \frac{1}{2}} \right|:$$

A is strictly greater than $$\frac{5}{2}$$
B is strictly greater than $$\frac{3}{2}$$ but less than $$\frac{5}{2}$$
C is equal to $$\frac{5}{2}$$
D lie in the interval $$(1, 2)$$
Answer :   is strictly greater than $$\frac{3}{2}$$ but less than $$\frac{5}{2}$$
Discuss Question

16. If $$2{z_1} - 3{z_2} + {z_3} = 0$$    then $${z_1},{z_2},{z_3}$$  are represented by

A three vertices of a triangle
B three collinear points
C three vertices of a rhombus
D None of these
Answer :   three collinear points
Discuss Question

17. If the cube roots of unity are $$1,\omega ,{\omega ^2}$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0,$$    are

A $$ - 1, - 1 + 2\omega , - 1 - 2{\omega ^2}$$
B $$ - 1, - 1, - 1$$
C $$ - 1,1 - 2\omega , 1 - 2{\omega ^2}$$
D $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
Answer :   $$ - 1,1 - 2\omega , 1 - 2{\omega ^2}$$
Discuss Question

18. If the point $${z_1} = 1 + i$$   where $$i = \sqrt { - 1} $$   is the reflection of a point $${z_2} = x + iy$$   in the line $$i\bar z - i\bar z = 5,$$   then the point $$z_2$$ is

A $$1 + 4i$$
B $$4 + i$$
C $$1 - i$$
D $$- 1 - i$$
Answer :   $$1 + 4i$$
Discuss Question

19. If $$z$$ is a nonreal root of $$\root 7 \of { - 1} $$  then $${z^{86}} + {z^{175}} + {z^{289}}$$    is equal to

A $$0$$
B $$- 1$$
C $$3$$
D $$1$$
Answer :   $$- 1$$
Discuss Question

20. The value of $${\text{Arg}}\left[ {i\ln \left( {\frac{{a - ib}}{{a + ib}}} \right)} \right],$$    where $$a$$ and $$b$$ are real numbers, is

A $$0\,\,{\text{or}}\,\,\pi $$
B $$\frac{\pi }{2}$$
C not defined
D None of these
Answer :   $$0\,\,{\text{or}}\,\,\pi $$
Discuss Question


Practice More MCQ Question on Maths Section