71.
If one of the lines of $$m{y^2} + \left( {1 - {m^2}} \right)xy - m{x^2} = 0$$ is a bisector of the angle between the lines $$xy= 0,$$ then $$m$$ is-
Equation of bisectors of lines, $$xy=0$$ are $$y = \pm x$$
Put $$y = \pm x$$ in the given equation
$$\eqalign{
& m{y^2} + \left( {1 - {m^2}} \right)xy - m{x^2} = 0 \cr
& \therefore m{x^2} + \left( {1 - {m^2}} \right){x^2} - m{x^2} = 0 \cr
& \Rightarrow 1 - {m^2} = 0\,\,\, \Rightarrow m = \pm 1 \cr} $$
72.
Let $$P = \left( { - 1,\,0} \right),\,Q = \left( {0,\,0} \right)$$ and $$R = \left( {3,\,3\sqrt 3 } \right)$$ be three point. The equation of the bisector of the angle $$PQR$$ is :
The coordinates of points $$P,\,Q,\,R$$ are $$\left( { - 1,\,0} \right),\,\left( {0,\,0} \right),\,\left( {3,\,3\sqrt 3 } \right)$$ respectively.
Slope of $$QR = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \frac{{3\sqrt 3 }}{3}$$
$$\eqalign{
& \Rightarrow \tan \,\theta = \sqrt 3 \cr
& \Rightarrow \theta = \frac{\pi }{3} \cr
& \Rightarrow \angle RQX = \frac{\pi }{3} \cr
& \therefore \,\angle RQP = \pi - \frac{\pi }{3} = \frac{{2\pi }}{3}\,; \cr} $$
Let $$QM$$ bisects the $$\angle PQR,$$
$$\therefore $$ Slope of the line $$QM = \tan \frac{{2\pi }}{3} = - \sqrt 3 $$
$$\therefore $$ Equation of line $$QM$$ is
$$\eqalign{
& \left( {y - 0} \right) = - \sqrt 3 \left( {x - 0} \right) \cr
& \Rightarrow y = - \sqrt 3 x \cr
& \Rightarrow \sqrt 3 x + y = 0 \cr} $$
73.
A line $$L$$ intersects the three sides $$BC,\,CA$$ and $$AB$$ of a $$\Delta ABC$$ at $$P,\,Q$$ and $$R$$ respectively. Then, $$\frac{{BP}}{{PC}}.\frac{{CQ}}{{QA}}.\frac{{AR}}{{RB}}$$ is equal to :
Let $$\left( {{a^2},\,a} \right)$$ be the point of shortest distance on $$x = {y^2}.$$ Then distance between $$\left( {{a^2},\,a} \right)$$ and line $$x-y+1=0$$ is given by
$$D = \frac{{{a^2} - a + 1}}{{\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\left[ {{{\left( {a - \frac{1}{2}} \right)}^2} + \frac{3}{4}} \right]$$
It is minimum when $$a = \frac{1}{2}$$ and $${D_{\min .}} = \frac{3}{{4\sqrt 2 }} = \frac{{3\sqrt 2 }}{8}$$
We know that orthocenter is the meeting point of altitudes of a $$\Delta $$
Equation of alt. AD
$$ \Rightarrow $$ line parallel to $$y$$-axis through (3, 4)
$$ \Rightarrow x = 3.....(1)$$
Similarly equation of $$OE \bot AB$$ is
$$\eqalign{
& y = - \frac{{3 - 4}}{{4 - 0}}x \cr
& \Rightarrow y = \frac{x}{4}.....(2) \cr} $$
Solving (1) and (2), we get orthocenter as $$\left( {3,\,\frac{3}{4}} \right).$$
77.
The perpendicular bisector of the line segment joining $$P(1, \,4)$$ and $$Q(k, \,3)$$ has $$y$$-intercept $$-4.$$ Then a possible value of $$k$$ is-
78.
If $$A\left( {\sin \,\alpha ,\,\frac{1}{{\sqrt 2 }}} \right)$$ and $$B\left( {\frac{1}{{\sqrt 2 }},\,\cos \,\alpha } \right),\, - \pi \leqslant \alpha \leqslant \pi ,$$ are two points on the same side of the line $$x-y=0$$ then $$\alpha $$ belongs to the interval :