61. A rectangle $$ABCD,$$   where $$A\left( {0,\,0} \right),\,B\left( {4,\,0} \right),\,C\left( {4,\,2} \right),\,D\left( {0,\,2} \right),$$        undergoes the following transformations successively :
$$\eqalign{ & {\text{i}}{\text{.}}\,{f_1}\left( {x,\,y} \right) \to \left( {y,\,x} \right) \cr & {\text{ii}}{\text{.}}\,{f_2}\left( {x,\,y} \right) \to \left( {x + 3y,\,y} \right) \cr & {\text{iii}}{\text{.}}\,{f_3}\left( {x,\,y} \right) \to \left( {\frac{{\left( {x - y} \right)}}{2},\frac{{\left( {x + y} \right)}}{2}} \right) \cr} $$
The final figure will be :

A a square
B a rhombus
C a rectangle
D a parallelogram
Answer :   a parallelogram
Discuss Question

62. If a ray travelling along the line $$x=1$$  gets reflected from the line $$x+y=1$$   then the equation of the line along which the reflected ray travels is :

A $$y=0$$
B $$x-y=1$$
C $$x=0$$
D none of these
Answer :   $$y=0$$
Discuss Question

63. A triangle with vertices $$\left( {4,\,0} \right),\,\left( { - 1,\, - 1} \right),\,\left( {3,\,5} \right)$$     is-

A isosceles and right angled
B isosceles but not right angled
C right angled but not isosceles
D neither right angled nor isosceles
Answer :   isosceles and right angled
Discuss Question

64. A straight line $$L$$ with negative slope passes through the point $$\left( {8,\,2} \right)$$  and cuts the positive coordinate axes at points $$P$$ and $$Q.$$ As $$L$$ varies the absolute minimum value of $$OP + OQ$$   is ($$O$$ is origin)

A 28
B 15
C 18
D 10
Answer :   18
Discuss Question

65. Let $$P = \left( { - 1,\,0} \right),\,Q = \left( {0,\,0} \right)$$     and $$R = \left( {3,\,3\sqrt 3 } \right)$$   be three points. Then the equation of the bisector of the angle $$PQR$$  is-

A $$\frac{{\sqrt 3 }}{2}x + y = 0$$
B $$x + \sqrt 3 y = 0$$
C $$\sqrt 3 x + y = 0$$
D $$x + \frac{{\sqrt 3 }}{2}y = 0$$
Answer :   $$\sqrt 3 x + y = 0$$
Discuss Question

66. The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A Collinear
B Vertices of a parallelogram
C Vertices of a rectangle
D None of these
Answer :   Collinear
Discuss Question

67. A line passing through the point $$\left( {2,\,2} \right)$$  and the axes enclose an area $$\lambda .$$ The intercepts on the axes made by the line are given by the two roots of :

A $${x^2} - 2\left| \lambda \right|x + \left| \lambda \right| = 0$$
B $${x^2} + \left| \lambda \right|x + 2\left| \lambda \right| = 0$$
C $${x^2} - \left| \lambda \right|x + 2\left| \lambda \right| = 0$$
D none of these
Answer :   $${x^2} - \left| \lambda \right|x + 2\left| \lambda \right| = 0$$
Discuss Question

68. The orthocenter of the triangle formed by the pair of lines $$2{x^2} - xy - {y^2} + x + 2y - 1 = 0$$       and the line $$x+y+1=0$$    is :

A $$\left( { - 1,\,0} \right)$$
B $$\left( {0,\,1} \right)$$
C $$\left( { - 1,\,1} \right)$$
D none of these
Answer :   $$\left( { - 1,\,0} \right)$$
Discuss Question

69. Given a family of lines $$a\left( {2x + y + 4} \right) + b\left( {x - 2y - 3} \right) = 0,$$       the number of lines belonging to the family at a distance $$\sqrt {10} $$  from $$P\left( {2,\, - 3} \right)$$   is :

A $$0$$
B $$1$$
C $$2$$
D $$4$$
Answer :   $$1$$
Discuss Question

70. The area of the figure formed by the lines $$ax + by + c = 0,\,ax - by + c = 0,\,ax + by - c = 0$$          and $$ax - by - c = 0$$    is :

A $$\frac{{{c^2}}}{{ab}}$$
B $$\frac{{2{c^2}}}{{ab}}$$
C $$\frac{{{c^2}}}{{2ab}}$$
D $$\frac{{{c^2}}}{{4ab}}$$
Answer :   $$\frac{{2{c^2}}}{{ab}}$$
Discuss Question


Practice More MCQ Question on Maths Section