Clearly, $$A$$ will remain as $$\left( {0,\,0} \right),{f_1}$$ will make $$B$$ as $$\left( {0,\,4} \right),{f_2}$$ will make it $$\left( {12,\,4} \right),$$ and $${f_3}$$ will make it $$\left( {4,\,8} \right),{f_1}$$ will make $$C$$ as $$\left( {2,\,4} \right),{f_2}$$ will make it $$\left( {14,\,4} \right),$$ and $${f_3}$$ will make it $$\left( {5,\,9} \right).$$
Finally, $${f_1}$$ will make $$D$$ as $$\left( {2,\,0} \right),{f_2}$$ will make it $$\left( {2,\,0} \right),$$ and $${f_3}$$ will make it $$\left( {1,\,1} \right).$$
So, we finally get $$A\left( {0,\,0} \right),\,B\left( {4,\,8} \right),\,C\left( {5,\,9} \right){\text{ and }}D\left( {1,\,1} \right).$$
Hence,
$$\eqalign{
& {m_{AB}} = \frac{8}{4},\,{m_{BC}} = \frac{{9 - 8}}{{5 - 4}} = 1,\,{m_{CD}} = \frac{{9 - 1}}{{5 - 1}} = \frac{8}{4}, \cr
& {m_{AD}} = 1,\,{m_{AC}} = \frac{9}{5},\,{m_{BD}} = \frac{{8 - 1}}{{4 - 1}} = \frac{7}{3} \cr} $$
Hence, the final figure will be a parallelogram.
62.
If a ray travelling along the line $$x=1$$ gets reflected from the line $$x+y=1$$ then the equation of the line along which the reflected ray travels is :
$$\eqalign{
& AB = \sqrt {{{\left( {4 + \,1} \right)}^2} + \,{{\left( {0 + 1} \right)}^2}} = \sqrt {26} \cr
& BC = \sqrt {{{\left( {3 + \,1} \right)}^2} + \,{{\left( {5 + 1} \right)}^2}} = \sqrt {52} \cr
& CA = \sqrt {{{\left( {4 - 3} \right)}^2} + \,{{\left( {0 - 5} \right)}^2}} = \sqrt {26} \cr} $$
In isosceles triangle side $$AB = CA$$
For right angled triangle, $$B{C^2} = A{B^2} + A{C^2}$$
So, here $$\eqalign{
& BC = \sqrt {52} \, \cr
& {\text{or}}\,{\text{ }}B{C^2} = 52 \cr
& {\text{or}}\,{\text{ }}{\left( {\sqrt {26} } \right)^2} + {\left( {\sqrt {26} } \right)^2} = 52 \cr} $$
So, the given triangle is right angled and also isosceles .
64.
A straight line $$L$$ with negative slope passes through the point $$\left( {8,\,2} \right)$$ and cuts the positive coordinate axes at points $$P$$ and $$Q.$$ As $$L$$ varies the absolute minimum value of $$OP + OQ$$ is ($$O$$ is
origin)
Let the equation of the line $$L$$ be $$y - 2 = m\left( {x - 8} \right),\,m < 0$$
Coordinates of $$P$$ and $$Q$$ are $$P\left( {8 - \frac{2}{m},\,0} \right)$$ and $$Q\left( {0,\,2 - 8m} \right)$$
$$\eqalign{
& {\text{So, }}OP + OQ = 8 - \frac{2}{m} + 2 - 8m = 10 + \frac{2}{{ - m}} + 8\left( { - m} \right) \cr
& \geqslant 10 + 2\sqrt {\frac{2}{{ - m}} + 8\left( { - m} \right)} \geqslant 18 \cr} $$
absolute min. value of $$OP + OQ = 18.$$
65.
Let $$P = \left( { - 1,\,0} \right),\,Q = \left( {0,\,0} \right)$$ and $$R = \left( {3,\,3\sqrt 3 } \right)$$ be three points. Then the equation of the bisector of the angle $$PQR$$ is-
The given points are $$A\left( { - a, - b} \right),\,B\left( {0,\,0} \right),\,C\left( {a,\,b} \right){\text{ and }}D\left( {{a^2},\,ab} \right)$$
$$\eqalign{
& {\text{Slope of }}AB = \frac{b}{a} = {\text{ slope of }}BC = {\text{ slope of }}BD \cr
& \therefore A,\,B,\,C,\,D\,\,\,{\text{are collinear}}{\text{.}} \cr} $$
67.
A line passing through the point $$\left( {2,\,2} \right)$$ and the axes enclose an area $$\lambda .$$ The intercepts on the axes made by the line are given by the two roots of :
$$\eqalign{
& 2{x^2} - xy - {y^2} + x + 2y - 1 = 0 \cr
& \Rightarrow \,\left( {2x + y - 1} \right)\left( {x - y + 1} \right) = 0 \cr} $$
So, the sides $$x-y+1=0$$ and $$x+y+1=0$$ are perpendicular to each other.
$$\therefore $$ the orthocenter is the intersection of the perpendicular sides.
69.
Given a family of lines $$a\left( {2x + y + 4} \right) + b\left( {x - 2y - 3} \right) = 0,$$ the number of lines belonging to the family at a distance $$\sqrt {10} $$ from $$P\left( {2,\, - 3} \right)$$ is :