31. If the slope of one of the lines represented by $$a{x^2} + 2hxy + b{y^2} = 0$$     is the square of the other, then $$\frac{{a + b}}{h} + \frac{{8{h^2}}}{{ab}} = ?$$

A $$4$$
B $$6$$
C $$8$$
D none of these
Answer :   $$6$$
Discuss Question

32. Area of the parallelogram formed by the lines $$y = mx, \,y=mx+1, \,y=nx$$      and $$y=nx+1$$   equals-

A $$\frac{{\left| {m + n} \right|}}{{{{\left( {m - n} \right)}^2}}}$$
B $$\frac{2}{{\left| {m + n} \right|}}$$
C $$\frac{1}{{\left( {\left| {m + n} \right|} \right)}}$$
D $$\frac{1}{{\left( {\left| {m - n} \right|} \right)}}$$
Answer :   $$\frac{1}{{\left( {\left| {m - n} \right|} \right)}}$$
Discuss Question

33. The equation of the image of the pair of rays $$y = \left| x \right|$$  by the line $$x=1$$  is :

A $$\left| y \right| = x + 2$$
B $$\left| y \right| + 2 = x$$
C $$y = \left| {x - 2} \right|$$
D none of these
Answer :   $$y = \left| {x - 2} \right|$$
Discuss Question

34. The line $$L$$ given by $$\frac{x}{5} + \frac{y}{b} = 1$$   passes through the point (13, 32). The line $$K$$ is parallel to $$L$$ and has the equation $$\frac{x}{c} + \frac{y}{3} = 1.$$   Then the distance between $$L$$ and $$K$$ is-

A $$\sqrt {17} $$
B $$\frac{{17}}{{\sqrt {15} }}$$
C $$\frac{{23}}{{\sqrt {17} }}$$
D $$\frac{{23}}{{\sqrt {15} }}$$
Answer :   $$\frac{{23}}{{\sqrt {17} }}$$
Discuss Question

35. A ray of light passing through a point $$\left( {1,\,2} \right)$$  is reflected on the $$x$$-axis at point $$Q$$ and passes through the point $$\left( {5,\,8} \right).$$   Then the abscissa of the point $$Q$$ is :

A $$ - 3$$
B $$\frac{9}{5}$$
C $$\frac{{13}}{5}$$
D None of these
Answer :   $$\frac{9}{5}$$
Discuss Question

36. Let $$a, \,b, \,c$$   and $$d$$ be non-zero numbers. If the point of intersection of the lines $$4ax + 2ay + c=0$$     and $$5bx + 2by+ d=0$$     lies in the fourth quadrant and is equidistant from the two axes then-

A $$3bc-2ad=0$$
B $$3bc +2ad=0$$
C $$2bc-3ad=0$$
D $$2bc + 3ad=0$$
Answer :   $$3bc-2ad=0$$
Discuss Question

37. The point $$P\left( {2,\,1} \right)$$  is shifted by $$3\sqrt 2 $$  parallel to the line $$x+y=1,$$   in the direction of increasing ordinate, to reach $$Q.$$ The image of $$Q$$ by the line $$x+y=1$$  is :

A $$\left( {5,\, - 2} \right)$$
B $$\left( { - 1,\,4} \right)$$
C $$\left( {3,\, - 4} \right)$$
D $$\left( { - 3,\,2} \right)$$
Answer :   $$\left( { - 3,\,2} \right)$$
Discuss Question

38. The bisector of the acute angle formed between the lines $$4x - 3y + 7 = 0$$    and $$3x - 4y + 14 = 0$$    has the equation :

A $$x + y + 3 = 0$$
B $$x - y - 3 = 0$$
C $$x - y + 3 = 0$$
D $$3x + y - 7 = 0$$
Answer :   $$x - y + 3 = 0$$
Discuss Question

39. The lines $${L_1}:y - x = 0$$   and $${L_2}:2x + y = 0$$    intersect the line $${L_3}:y + 2 = 0$$    at $$P$$ and $$Q$$ respectively. The bisector of the acute angle between $${L_1}$$  and $${L_2}$$  intersects $${L_3}$$  at $$R.$$
Statement-1: The ratio $$PR : RQ$$   equals $$2\sqrt 2 :\sqrt 5 $$
Statement-2: In any triangle, bisector of an angle divides the triangle into two similar triangles.

A Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
B Statement-1 is true, Statement-2 is false.
C Statement-1 is false, Statement-2 is true.
D Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
Answer :   Statement-1 is true, Statement-2 is false.
Discuss Question

40. Let $$A (h, \,k), \,B(1, \,1)$$     and $$C (2, \,1)$$   be the vertices of a right angled triangle with $$AC$$  as its hypotenuse. If the area of the triangle is 1 square unit, then the set of values which $$'k\,'$$  can take is given by-

A $$\left\{ { - 1,\,3} \right\}$$
B $$\left\{ { - 3,\, - 2} \right\}$$
C $$\left\{ {1,\,3} \right\}$$
D $$\left\{ {0,\,2} \right\}$$
Answer :   $$\left\{ { - 1,\,3} \right\}$$
Discuss Question


Practice More MCQ Question on Maths Section