Being a pair of lines, $$abc + 2fgh - a{f^2} - b{g^2} - c{h^2} = 0.$$ This gives $$m=4.$$
152.
The lines $$p\left( {{p^2} + 1} \right)x - y + q = 0$$ and $${\left( {{p^2} + 1} \right)^2}x + \left( {{p^2} + 1} \right)y + 2q = 0$$ are perpendicular to a common line for :
If the lines $$p\left( {{p^2} + 1} \right)x - y + q = 0$$ and $${\left( {{p^2} + 1} \right)^2}x + \left( {{p^2} + 1} \right)y + 2q = 0$$ are perpendicular to a common line then these lines must be parallel to each other,
$$\eqalign{
& \therefore {m_1} = {m_2} \Rightarrow - \frac{{p\left( {{p^2} + 1} \right)}}{{ - 1}} = - \frac{{{{\left( {{p^2} + 1} \right)}^2}}}{{{p^2} + 1}} \cr
& \Rightarrow \left( {{p^2} + 1} \right)\left( {p + 1} \right) = 0 \cr
& \Rightarrow p = - 1 \cr} $$
$$\therefore p$$ can have exactly one value.
153.
Let $$A\left( {2,\, - 3} \right)$$ and $$B\left( { - 2,\,3} \right)$$ be vertices of a triangle $$ABC.$$ If the centroid of this triangle moves on the line
$$2x +3y =1,$$ then the locus of the vertex $$C$$ is the line-
Let the vertex $$C$$ be $$\left( {h,\,k} \right),$$ then the centroid of $$\Delta ABC$$ is $$\left( {\frac{{2 - 2 + h}}{3},\,\frac{{ - 3 + 1 + k}}{3}} \right)\,\,{\text{or }}\,\left( {\frac{h}{3},\,\frac{{ - 2 + k}}{3}} \right)$$
It lies on $$2x+3y=1$$
$$\eqalign{
& \Rightarrow \frac{{2h}}{3} - 2 + k = 1 \cr
& \Rightarrow 2h + 3k = 9 \cr} $$
$$=$$ Locus of $$C$$ is $$2x+3y=9$$
154.
If the line $$2x + y = k$$ passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3 : 2, then $$k$$ equals :
Let the joining points be $$A\left( {1,\,1} \right)$$ and $$B\left( {2,\,4} \right)$$
Let point $$C$$ divides line $$AB$$ in the ratio 3 : 2
So, by section formula we have
$$C = \left( {\frac{{3 \times 2 + 2 \times 1}}{{3 + 2}},\,\frac{{3 \times 4 + 2 \times 1}}{{3 + 2}}} \right) = \left( {\frac{8}{5},\,\frac{{14}}{5}} \right)$$
Since Line $$2x + y = k$$ passes through $$C\left( {\frac{8}{5},\,\frac{{14}}{5}} \right)$$
$$\therefore \,\,C$$ satisfies the equation $$2x + y=k$$
$$ \Rightarrow \frac{{2 + 8}}{5} + \frac{{14}}{5} = k\,\,\,\,\, \Rightarrow k = 6$$
155.
The area of the pentagon whose vertices are $$\left( {4,\,1} \right),\,\left( {3,\,6} \right),\,\left( { - 5,\,1} \right),\,\left( { - 3,\, - 3} \right)$$ and $$\left( { - 3,\,0} \right)$$ is :
156.
A line has intercepts $$a,\,b$$ on the coordinate axes. If the axes are rotated about the origin through an angle $$\alpha $$ then the line has intercepts $$p,\,q$$ on the new position of the axes respectively. Then :
A
$$\frac{1}{{{p^2}}} + \frac{1}{{{q^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}}$$
B
$$\frac{1}{{{p^2}}} - \frac{1}{{{q^2}}} = \frac{1}{{{a^2}}} - \frac{1}{{{b^2}}}$$
C
$$\frac{1}{{{p^2}}} + \frac{1}{{{a^2}}} = \frac{1}{{{q^2}}} + \frac{1}{{{b^2}}}$$
The length of the perpendicular from the origin to the line in both the cases is the same. So
$$\eqalign{
& \frac{{\frac{0}{a} + \frac{0}{b} - 1}}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}}} }} = \frac{{\frac{0}{p} + \frac{0}{q} - 1}}{{\sqrt {\frac{1}{{{p^2}}} + \frac{1}{{{q^2}}}} }} \cr
& \Rightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{{{p^2}}} + \frac{1}{{{q^2}}}. \cr} $$
157.
The locus of variable point whose distance from $$\left( { - 2,\,0} \right)$$ is $$\frac{2}{3}$$ times its distance from the line $$x = - \frac{9}{2}$$ is-
If variable point is $$P$$ and $$S\left( { - 2,\,0} \right)$$ then $$PS = \frac{2}{3}PM$$ where $$PM$$ is the perpendicular distance of point $$P$$ from
given line $$x = - \frac{9}{2}$$
$$\therefore $$ By definition $$P$$ describes an ellipse. $$\left( {e = \frac{2}{3} < 1} \right)$$
158.
If $$a,\,c,\,b$$ are in GP then the line $$ax+by+c=0$$
A
has a fixed direction
B
always passes through a fixed point
C
forms a triangle with the axes whose area is constant
D
always cuts intercepts on the axes such that their sum is zero
Answer :
forms a triangle with the axes whose area is constant
159.
Through the point $$P\left( {\alpha ,\,\beta } \right),$$ where $$\alpha \beta > 0,$$ the straight line $$\frac{x}{a} + \frac{y}{b} = 1$$ is drawn so as to form with axes a triangle of area $$S.$$ If $$ab > 0,$$ then least value of $$S$$ is :