161. If three points $$\left( {h,\,0} \right),\,\left( {a,\,b} \right)$$   and $$\left( {0,\,k} \right)$$  lies on a line, then the value of $$\frac{a}{h} + \frac{b}{k}$$   is :

A 0
B 1
C 2
D 3
Answer :   1
Discuss Question

162. From the point $$\left( {4,\,3} \right)$$  a perpendicular is dropped on the $$x$$-axis as well as on the $$y$$-axis. If the lengths of perpendiculars are $$p,\,q$$  respectively, then which one of the following is correct ?

A $$p = q$$
B $$3p = 4q$$
C $$4p = 3q$$
D $$p + q = 5$$
Answer :   $$4p = 3q$$
Discuss Question

163. Let $$\left( {h,\,k} \right)$$  be a fixed point where $$h > 0,\,k > 0.$$    A straight line passing through this point cuts the positive direction of the coordinate axes at the points $$P$$ and $$Q.$$ Then the minimum area of the $$\Delta OPQ.\,O$$   being the origin, is :

A $$4hk$$  square units
B $$2hk$$  square units
C $$3hk$$  square units
D None of these
Answer :   $$2hk$$  square units
Discuss Question

164. $$L$$ is a variable line such that the algebraic sum of the distances of the points $$\left( {1,\,1} \right),\,\left( {2,\,0} \right)$$   and $$\left( {0,\,2} \right)$$  from the line is equal to zero. The line $$L$$ will always pass through :

A $$\left( {1,\,1} \right)$$
B $$\left( {2,\,1} \right)$$
C $$\left( {1,\,2} \right)$$
D none of these
Answer :   $$\left( {1,\,1} \right)$$
Discuss Question

165. Locus of mid point of the portion between the axes of $$x\,\cos \,\alpha + y\,\sin \,\alpha = p$$     where $$p$$ is constant is-

A $${x^2} + {y^2} = \frac{4}{{{p^2}}}$$
B $${x^2} + {y^2} = 4{p^2}$$
C $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = \frac{2}{{{p^2}}}$$
D $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = \frac{4}{{{p^2}}}$$
Answer :   $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = \frac{4}{{{p^2}}}$$
Discuss Question

166. If $${p_1},\,{p_2}$$  are the lengths of the normals drawn from the origin on the lines $$x\,\cos \,\theta + y\,\sin \,\theta = 2a\,\cos \,4\theta $$       and $$x\,\sec \,\theta + y\,{\text{cosec }}\theta = 4a\,\cos \,2\theta $$       and respectively, and $$mp_1^2 + np_2^2 = 4{a^2}.$$     Then :

A $$m = 1,\,n = 1$$
B $$m = 1,\,n = 4$$
C $$m = 4,\,n = 1$$
D $$m = 1,\,n = - 1$$
Answer :   $$m = 1,\,n = 4$$
Discuss Question

167. Let $$A = \left( {1,\,0} \right)$$   and $$B = \left( {2,\,1} \right).$$   The line $$AB$$  turns about $$A$$ through an angle $$\frac{\pi }{6}$$ in the clockwise sense, and the new position of $$B$$ is $$B'.$$ Then $$B'$$ has the coordinates :

A $$\left( {\frac{{3 + \sqrt 3 }}{2},\,\frac{{\sqrt 3 - 1}}{2}} \right)$$
B $$\left( {\frac{{3 - \sqrt 3 }}{2},\,\frac{{\sqrt 3 + 1}}{2}} \right)$$
C $$\left( {\frac{{1 - \sqrt 3 }}{2},\,\frac{{1 + \sqrt 3 }}{2}} \right)$$
D none of these
Answer :   $$\left( {\frac{{3 + \sqrt 3 }}{2},\,\frac{{\sqrt 3 - 1}}{2}} \right)$$
Discuss Question

168. If two vertices of an equilateral triangle have integral coordinates then the third vertex will have :

A integral coordinates
B coordinates which are rational
C at least one coordinate irrational
D coordinates which are irrational
Answer :   at least one coordinate irrational
Discuss Question

169. If the points $$\left( { - 2,\,0} \right),\,\left( { - 1,\,\frac{1}{{\sqrt 3 }}} \right)$$    and $$\left( {\cos \,\theta ,\,\sin \,\theta } \right)$$   are collinear then the number of values of $$\theta \, \in \left[ {0,\,2\pi } \right]$$   is :

A 0
B 1
C 2
D infinite
Answer :   1
Discuss Question

170. A ray of light along $$x + \sqrt 3 y = \sqrt 3 $$    gets reflected upon reaching $$x$$-axis, the equation of the reflected ray is-

A $$y = x + \sqrt 3 $$
B $$\sqrt 3 y = x - \sqrt 3 $$
C $$y = \sqrt 3 x - \sqrt 3 $$
D $$\sqrt 3 y = x - 1$$
Answer :   $$\sqrt 3 y = x - \sqrt 3 $$
Discuss Question


Practice More MCQ Question on Maths Section