131. Two lines represented by the equation $${x^2} - {y^2} - 2x + 1 = 0$$     are rotated about the point $$\left( {1,\,0} \right),$$  the line making the bigger angle with the positive direction of the $$x$$-axis being turned by $${45^ \circ }$$  in the clockwise sense and the other line being turned by $${15^ \circ }$$  in the anticlockwise sense. The combined equation of the pair of lines in their new positions is :

A $$\sqrt 3 {x^2} - xy + 2\sqrt 3 x - y + \sqrt 3 = 0$$
B $$\sqrt 3 {x^2} - xy - 2\sqrt 3 x + y + \sqrt 3 = 0$$
C $$\sqrt 3 {x^2} - xy - 2\sqrt 3 x + \sqrt 3 = 0$$
D none of these
Answer :   $$\sqrt 3 {x^2} - xy - 2\sqrt 3 x + y + \sqrt 3 = 0$$
Discuss Question

132. If a vertex of an equilateral triangle is the origin and the side opposite to it has the equation $$x+y=1$$   then the orthocenter of the triangle is :

A $$\left( {\frac{1}{3},\,\frac{1}{3}} \right)$$
B $$\left( {\frac{{\sqrt 2 }}{3},\,\frac{{\sqrt 2 }}{3}} \right)$$
C $$\left( {\frac{2}{3},\,\frac{2}{3}} \right)$$
D none of these
Answer :   $$\left( {\frac{1}{3},\,\frac{1}{3}} \right)$$
Discuss Question

133. A straight line through the origin $$O$$ meets the parallel lines $$4x + 2y = 9$$   and $$2x + y + 6 = 0$$    at points $$P$$ and $$Q,$$ respectively. Then the point $$O$$ divides the segment $$PQ$$  in the ratio :

A $$1 : 2$$
B $$3 : 4$$
C $$2 : 1$$
D $$4 : 3$$
Answer :   $$3 : 4$$
Discuss Question

134. Let $$P = \left( {1,\,1} \right)$$   and $$Q = \left( {3,\,2} \right).$$   The point $$R$$ on the $$x$$-axis such that $$PR+RQ$$   is the minimum is :

A $$\left( {\frac{5}{3},\,0} \right)$$
B $$\left( {\frac{1}{3},\,0} \right)$$
C $$\left( {3,\,0} \right)$$
D none of these
Answer :   $$\left( {\frac{5}{3},\,0} \right)$$
Discuss Question

135. Line $$L$$ has intercepts $$a$$ and $$b$$ on the coordinate axes. When the axes are rotated through a given angle, keeping the origin fixed, the same line $$L$$ has intercepts $$p$$ and $$q,$$ then-

A $${a^2} + {b^2} = {p^2} + {q^2}$$
B $$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{{{p^2}}} + \frac{1}{{{q^2}}}$$
C $${a^2} + {p^2} = {b^2} + {q^2}$$
D $$\frac{1}{{{a^2}}} + \frac{1}{{{p^2}}} = \frac{1}{{{b^2}}} + \frac{1}{{{q^2}}}$$
Answer :   $$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{1}{{{p^2}}} + \frac{1}{{{q^2}}}$$
Discuss Question

136. Two straight lines passing through the point $$A\left( {3,\,2} \right)$$  cut the line $$2y = x + 3$$   and $$x$$-axis perpendicularly at $$P$$ and $$Q$$ respectively. The equation of the line $$PQ$$  is :

A $$7x + y - 21 = 0$$
B $$x + 7y + 21 = 0$$
C $$2x + y - 8 = 0$$
D $$x + 2y + 8 = 0$$
Answer :   $$7x + y - 21 = 0$$
Discuss Question

137. A square of side a lies above the $$x$$-axis and has one vertex at the origin. The side passing through the origin makes an angle $$\alpha \left( {0 < \alpha < \frac{\pi }{4}} \right)$$    with the positive direction of $$x$$-axis. The equation of its diagonal not passing through the origin is-

A $$y\left( {\cos \,\alpha + \sin \,\alpha } \right) + x\left( {\cos \,\alpha - \sin \,\alpha } \right) = a$$
B $$y\left( {\cos \,\alpha - \sin \,\alpha } \right) - x\left( {\sin \,\alpha - \cos \,\alpha } \right) = a$$
C $$y\left( {\cos \,\alpha + \sin \,\alpha } \right) + x\left( {\sin \,\alpha - \cos \,\alpha } \right) = a$$
D $$y\left( {\cos \,\alpha + \sin \,\alpha } \right) + x\left( {\sin \,\alpha + \cos \,\alpha } \right) = a$$
Answer :   $$y\left( {\cos \,\alpha + \sin \,\alpha } \right) + x\left( {\cos \,\alpha - \sin \,\alpha } \right) = a$$
Discuss Question

138. The coordinates of two consecutive vertices $$A$$ and $$B$$ of a regular hexagon $$ABCDEF$$   are $$\left( {1,\,0} \right)$$  and $$\left( {2,\,0} \right)$$  respectively. The equation of the diagonal $$CE$$  is :

A $$\sqrt 3 x + y = 4$$
B $$x + \sqrt 3 y + 4 = 0$$
C $$x + \sqrt 3 y = 4$$
D none of these
Answer :   $$x + \sqrt 3 y = 4$$
Discuss Question

139. If the straight lines $$ax + may + 1 = 0,\,bx + \left( {m + 1} \right)by + 1 = 0$$         and $$cx + \left( {m + 2} \right)cy + 1 = 0$$     are concurrent, then $$a,\,b,\,c$$   form $$\left( {m \ne 0} \right)$$

A An A.P. only for $$m = 1$$
B An A.P. for all $$m$$
C A G.P. for all $$m$$
D A H.P. for all $$m$$
Answer :   A H.P. for all $$m$$
Discuss Question

140. The incentre of a triangle with vertices $$\left( {7,\,1} \right),\,\left( { - 1,\,5} \right)$$    and $$\left( {3 + 2\sqrt 3 ,\,3 + 4\sqrt 3 } \right)$$     is :

A $$\left( {3 + \frac{2}{{\sqrt 3 }},\,3 + \frac{4}{{\sqrt 3 }}} \right)$$
B $$\left( {1 + \frac{2}{{3\sqrt 3 }},\,1 + \frac{4}{{3\sqrt 3 }}} \right)$$
C $$\left( {7,\,1} \right)$$
D None of these
Answer :   $$\left( {3 + \frac{2}{{\sqrt 3 }},\,3 + \frac{4}{{\sqrt 3 }}} \right)$$
Discuss Question


Practice More MCQ Question on Maths Section