121. The area of the region bounded by the locus of a point $$P$$ satisfying $$d\left( {P,\,A} \right) = 4,$$   where $$A$$ is $$\left( {1,\,2} \right)$$  is :

A $$64 \,{\text{sq}}{\text{. units}}$$
B $$54 \,{\text{sq}}{\text{. units}}$$
C $$16\pi \,{\text{sq}}{\text{. units}}$$
D None of these
Answer :   $$64 \,{\text{sq}}{\text{. units}}$$
Discuss Question

122. The equation of the line segment $$AB$$  is $$y=x.$$  If $$A$$ and $$B$$ lie on the same side of the line mirror $$2x-y=1,$$   the image of $$AB$$  has the equation :

A $$x+y=2$$
B $$8x+y=9$$
C $$7x-y=6$$
D none of these
Answer :   $$7x-y=6$$
Discuss Question

123. Slope of a line passing through $$P\left( {2,\,3} \right)$$   and intersecting the line $$x+y=7$$   at a distance of 4 units from $$P,$$  is :

A $$\frac{{1 - \sqrt 5 }}{{1 + \sqrt 5 }}$$
B $$\frac{{1 - \sqrt 7 }}{{1 + \sqrt 7 }}$$
C $$\frac{{\sqrt 7 - 1}}{{\sqrt 7 + 1}}$$
D $$\frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}}$$
Answer :   $$\frac{{1 - \sqrt 7 }}{{1 + \sqrt 7 }}$$
Discuss Question

124. A straight the through a fixed point (2, 3) intersects the coordinate axes at distinct points $$P$$ and $$Q.$$ If $$O$$ is the origin and the rectangle $$OPRQ$$   is completed, then the locus of $$R$$ is:

A $$2x+3y=xy$$
B $$3x+2y=xy$$
C $$3x+2y=6xy$$
D $$3x+2y=6$$
Answer :   $$3x+2y=xy$$
Discuss Question

125. If the sum of the distances of a point from two perpendicular lines in a plane is 1, then its locus is-

A square
B circle
C straight line
D two intersecting lines
Answer :   square
Discuss Question

126. If the intercept made on the line $$y=mx$$   by lines $$y=2$$  and $$y=6$$  is less than 5 then the range of values of $$m$$ is :

A $$\left( { - \infty ,\, - \frac{4}{3}} \right) \cup \left( {\frac{4}{3},\, + \infty } \right)$$
B $$\left( { - \frac{4}{3},\,\frac{4}{3}} \right)$$
C $$\left( { - \frac{3}{4},\,\frac{3}{4}} \right)$$
D none of these
Answer :   $$\left( { - \infty ,\, - \frac{4}{3}} \right) \cup \left( {\frac{4}{3},\, + \infty } \right)$$
Discuss Question

127. Let $$PS$$  be the median of the triangle with vertices $$P\left( {2,\,2} \right),\,Q\left( {6,\, - 1} \right)$$    and $$R\left( {7,\,3} \right).$$   The equation of the line passing through $$\left( {1,\, - 1} \right)$$  and parallel to $$PS$$  is-

A $$2x-9y-7=0$$
B $$2x-9y-11=0$$
C $$2x+9y-11=0$$
D $$2x+9y+7=0$$
Answer :   $$2x+9y+7=0$$
Discuss Question

128. The line $${L_1}:4x + 3y - 12 = 0$$     intersects the $$x$$-and $$y$$-axis at $$A$$ and $$B,$$ respectively. A variable line perpendicular to $${L_1}$$  intersects the $$x$$-and the $$y$$-axis at $$P$$ and $$Q,$$ respectively. Then the locus of the circumcentre of triangle $$ABQ$$  is :

A $$3x - 4y + 2 = 0$$
B $$4x + 3y + 7 = 0$$
C $$6x - 8y + 7 = 0$$
D None of these
Answer :   $$6x - 8y + 7 = 0$$
Discuss Question

129. If $$2p$$  is the length of perpendicular from the origin to the lines $$\frac{x}{a} + \frac{y}{b} = 1,$$   then $${a^2},\,8{p^2},\,{b^2}$$   are in :

A A.P.
B G.P.
C H.P.
D None of these
Answer :   H.P.
Discuss Question

130. If the point $$\left( {a,\,a} \right)$$  falls between the lines $$\left| {x + y} \right| = 2$$   then :

A $$\left| a \right| = 2$$
B $$\left| a \right| = 1$$
C $$\left| a \right| < 1$$
D $$\left| a \right| < \frac{1}{2}$$
Answer :   $$\left| a \right| < 1$$
Discuss Question


Practice More MCQ Question on Maths Section