111.
A regular polygon with equal sides has $$9$$ diagonals. Two of the vertices are at $$A\left( { - 1,\,0} \right)$$ and $$B\left( {1,\,0} \right).$$ Possible areas of polygon is :
A
$$\frac{{3\sqrt 3 }}{2},\,2\sqrt 3 ,\,6\sqrt 3 $$
B
$$2\sqrt 3 ,\,3\sqrt 3 ,\,6\sqrt 3 $$
C
$$9\sqrt 3 ,\,6\sqrt 3 ,\,2\sqrt 3 $$
D
$$\frac{{3\sqrt 3 }}{2},\,3\sqrt 3 ,\,6\sqrt 3 $$
If polygon has $$n$$ sides, then the number of diagonals
$$\eqalign{
& = \frac{{n\left( {n - 3} \right)}}{2} = 9 \cr
& \therefore \,n = 6 \cr} $$
Now $$A$$ and $$B$$ can be adjacent vertices alternate vertices or opposite vertices.
If $$A$$ and $$B$$ are adjacent then side $$AB = 2,$$ then area $$ = 6 \times \Delta OAB$$
i.e area $$ = 6 \times \frac{{\sqrt 3 }}{4} \times {\left( 2 \right)^2} = 6\sqrt 3 $$
If $$A$$ and $$B$$ are alternate, then
$$\eqalign{
& 2\,\cos \,{30^ \circ } = a + a\,\cos \,{60^ \circ } \cr
& \therefore \,{\text{side }}a = \frac{2}{{\sqrt 3 }} \cr
& \therefore \,{\text{area}} = 6 \times \frac{{\sqrt 3 }}{4}{\left( {\frac{2}{{\sqrt 3 }}} \right)^2} = 2\sqrt 3 \cr} $$
Finally if $$A$$ and $$B$$ are opposite vertices then side $$a = \frac{1}{2}AB = 1$$
Then area $$ = 6 \times \frac{{\sqrt 3 }}{4}{\left( 1 \right)^2} = \frac{{3\sqrt 3 }}{2}$$
The given point lies on the lines $$x + y = 2,$$ if $$3{t^2} + 3t + 3 = 0.$$ Here discriminant $$9 - 12 < 0.$$
Therefore the value of $$t$$ is imaginary. Thus the given point cannot lie on the line.
115.
The point (4, 1) undergoes the following three transformations successively. (i) Reflection about the line $$y =x.$$ (ii) Translation through a distance 2 units along the positive direction of $$x$$-axis. (iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.
A
$$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B
$$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C
$$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
Reflection about the line $$y =x,$$ changes the point (4, 1) to (1, 4).
On translation of (1, 4) through a distance of 2 units along $$+ve$$ direction of $$x$$-axis the point becomes (1 + 2, 4), i.e., (3, 4).
On rotation about origin through an angle $$\frac{\pi }{4}$$ the point $$P$$ takes the position $$P'$$ such that
$$OP= OP'$$
Also $$OP = 5 = OP'$$ and $$\cos \,\theta = \frac{3}{5},\,\,\,\sin \,\theta = \frac{4}{5}$$
$$\eqalign{
& {\text{Now, }}\,x = OP'\cos \left( {\frac{\pi }{4} + \theta } \right) \cr
& = 5\left( {\cos \frac{\pi }{4}\cos \,\theta - \sin \frac{\pi }{4}\sin \,\theta } \right) \cr
& = 5\left( {\frac{3}{{5\sqrt 2 }} - \frac{4}{{5\sqrt 2 }}} \right) \cr
& = - \frac{1}{{\sqrt 2 }} \cr
& y = OP'\sin \left( {\frac{\pi }{4} + \theta } \right) \cr
& = 5\left( {\sin \frac{\pi }{4}\cos \,\theta + \cos \frac{\pi }{4}\sin \,\theta } \right) \cr
& = 5\left( {\frac{3}{{5\sqrt 2 }} + \frac{4}{{5\sqrt 2 }}} \right) \cr
& = \frac{7}{{\sqrt 2 }} \cr
& \therefore P' = \left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right) \cr} $$
116.
The line $$x + y = a$$ meets the axes of $$x$$ and $$y$$ at $$A$$ and $$B$$ respectively. A $$\Delta AMN$$ is inscribed in the $$\Delta OAB,\,O$$ being the origin, with right angle at $$N.\,M$$ and $$N$$ lie respectively on $$OB$$ and $$AB.$$ If the area of the $$\Delta AMN$$ is $$\frac{3}{8}$$ of the area of the $$\Delta OAB,$$ then $$\frac{{AN}}{{BN}}$$ is equal to :
Let $$\frac{{AN}}{{BN}} = \lambda .$$
Then, the coordinates of $$N$$ are $$\left( {\frac{a}{{1 + \lambda }},\,\frac{{\lambda a}}{{1 + \lambda }}} \right).$$
Where $$\left( {a,\,0} \right)$$ and $$\left( {0,\,a} \right)$$ are the coordinates of $$A$$ and $$B$$ respectively. Now, equation of $$MN$$ perpendicular to $$AB$$ is
$$\eqalign{
& y - \frac{{\lambda a}}{{1 + \lambda }} = x - \frac{a}{{1 + \lambda }} \cr
& \Rightarrow x - y = \frac{{1 - \lambda }}{{1 + \lambda }}a \cr} $$
So, the coordinates of $$M$$ are $$\left( {0,\,\frac{{1 - \lambda }}{{1 + \lambda }}a} \right)$$
Therefore, area of the $$\Delta AMN$$ is
$$\eqalign{
& = \frac{1}{2}\left| {\left[ {a\left( {\frac{{ - a}}{{\lambda + 1}}} \right) + \frac{{1 - \lambda }}{{{{\left( {1 + \lambda } \right)}^2}}}{a^2}} \right]} \right| \cr
& = \frac{{\lambda {a^2}}}{{{{\left( {1 + \lambda } \right)}^2}}} \cr} $$
Also, area of $$\Delta OAB = \frac{{{a^2}}}{2}$$
So, that according to the given condition
$$\eqalign{
& \frac{{\lambda {a^2}}}{{{{\left( {1 + \lambda } \right)}^2}}} = \frac{3}{8}.\frac{1}{2}{a^2} \cr
& \Rightarrow 3{\lambda ^2} - 10\lambda + 3 = 0 \cr
& \Rightarrow \lambda = 3{\text{ or }}\lambda = \frac{1}{3} \cr} $$
For $$\lambda = \frac{1}{3},\,M$$ lies outside the segment $$OB$$ and hence the required value of $$\lambda $$ is $$3.$$
117.
The equations to a pair of opposite sides of parallelogram are $${x^2} - 5x + 6 = 0$$ and $${y^2} - 6y + 5 = 0,$$ the equations to its diagonals are-
The sides of parallelogram are $$x=2, \,x=3, \,y=1, \,y=5.$$
$$\therefore $$ Diagonal $$AC$$ is $$\frac{{y - 1}}{{5 - 1}} = \frac{{x - 2}}{{3 - 2}}\,\,{\text{or}}\,\,y = 4x - 7$$
Equation diagonal $$BD$$ is $$\frac{{x - 2}}{{3 - 2}} = \frac{{y - 5}}{{1 - 5}}\,\,{\text{or}}\,\,4x + y = 13$$
118.
What is the equation of the line through $$\left( {1,\,2} \right)$$ so that the segment of the line intercepted between the axes is bisected at this point ?
$$\eqalign{
& \frac{{0 + x}}{2} = 1\,\,;\,\,\frac{{0 + y}}{2} = 2 \cr
& x = 2\,\,;\,\,y = 4 \cr} $$
Equation of line passing through $$\left( {2,\,0} \right)$$ and $$\left( {0,\,4} \right)$$
$$\eqalign{
& y - 0 = \frac{{4 - 0}}{{0 - 2}}\left( {x - 2} \right) \cr
& {\text{or }}y = - 2x + 4 \cr
& {\text{or }}2x + y = 4 \cr} $$
119.
Two lines $$2x-3y=1$$ and $$x+2y+3=0$$ divide the $$x$$-$$y$$ plane in four compartments which are named as shown in the figure. Consider the locations of the points $$\left( {2,\, - 1} \right)\left( {3,\,2} \right)$$ and $$\left( { - 1,\, - 2} \right).$$ We get
A
$$\left( {2,\, - 1} \right) \in \,{\text{IV}}$$
B
$$\left( {3,\,2} \right)\, \in \,{\text{III}}$$
C
$$\left( { - 1,\, - 2} \right)\, \in \,{\text{II}}$$
Consider the first line
$$\eqalign{
& 2x - 3y = 1 \cr
& \frac{x}{{\frac{1}{2}}} - \frac{y}{{\frac{1}{3}}} = 1 \cr} $$
Hence the intercepts are $$\frac{1}{2}$$ and $$\left( { - \frac{1}{3}} \right)......\left( {\text{i}} \right)$$
Similarly for the second line $$\frac{x}{{ - 3}} + \frac{y}{{\frac{{ - 3}}{2}}} = 1$$
Hence it has intercepts $$-3$$ and $$-1.5$$
Now both the lines intersect at $$\left( { - 1,\, - 1} \right)$$
This will be our origin.
Hence
Now consider the point $$\left( {2,\, - 1} \right)$$
Substituting the point in $$2x - 3y - 1 = 0$$
We get
$$8 > 0......\left( {\text{i}} \right)$$
Substituting it in $$x + 2y + 3 = 0$$
$$3 > 0......\left( {{\text{ii}}} \right)$$
Clearly from i and ii, it will lie in the new iv quadrant.
Similarly applying the above steps for the point $$\left( {3,\,2} \right)$$ and $$\left( { - 1,\,2} \right)$$ we get that the point $$\left( {3,\,2} \right)$$ lies in the new first quadrant while the point $$\left( { - 1,\, - 2} \right)$$ lies in the new IIIrd quadrant.
120.
Area of the triangle formed by the line $$x + y = 3$$ and the angle bisectors of the pairs of straight lines $${x^2} - {y^2} + 2y = 1$$ is :
$${x^2} - {y^2} + 2y = 1{\text{ or }}x = \pm \left( {y - 1} \right)$$
The bisectors of the above lines are $$x = 0$$ and $$y = 1$$
So, the area between $$x = 0, y = 1$$ and $$x + y = 3$$ is the shaded region shown in the figure. The area is given by $$\left( {\frac{1}{2}} \right) \times 2 \times 2 = 2{\text{ sq}}{\text{. units}}.$$