201.
Given that the vectors $$\overrightarrow \alpha $$ and $$\overrightarrow \beta $$ are non-collinear. The values of $$x$$ and $$y$$ for which $$\overrightarrow u - \overrightarrow v = \overrightarrow w $$ holds true if $$\overrightarrow u = 2x\overrightarrow \alpha + y\overrightarrow \beta ,\,\overrightarrow v = 2y\overrightarrow \alpha + 3x\overrightarrow \beta $$ and $$\overrightarrow w = 2\overrightarrow \alpha - 5\overrightarrow \beta ,$$ are :
202.
If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are three non-coplanar vectors, then the value of $$\frac{{\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)}}{{\left( {\overrightarrow c \times \overrightarrow a } \right).\overrightarrow b }} + \frac{{\overrightarrow b .\left( {\overrightarrow a \times \overrightarrow c } \right)}}{{\overrightarrow c .\left( {\overrightarrow a \times \overrightarrow b } \right)}}$$ is :
By definition of scalar triple product $${\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)}$$ can be written as $$\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]$$
$$\eqalign{
& \frac{{\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)}}{{\left( {\overrightarrow c \times \overrightarrow a } \right).\overrightarrow b }} + \frac{{\overrightarrow b .\left( {\overrightarrow a \times \overrightarrow c } \right)}}{{\overrightarrow c .\left( {\overrightarrow a \times \overrightarrow b } \right)}} \cr
& = \frac{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}{{\left[ {\overrightarrow c \overrightarrow a \overrightarrow b } \right]}} + \frac{{\left[ {\overrightarrow b \overrightarrow a \overrightarrow c } \right]}}{{\left[ {\overrightarrow c \overrightarrow a \overrightarrow b } \right]}} \cr
& = \frac{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} - \frac{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} \cr
& = 1 - 1 \cr
& = 0 \cr
& \because \,\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right] = \left[ {\overrightarrow b \overrightarrow c \overrightarrow a } \right] = \left[ {\overrightarrow c \overrightarrow a \overrightarrow b } \right] \cr
& {\text{but }}\left[ {\overrightarrow b \overrightarrow c \overrightarrow a } \right] = - \left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right] \cr} $$
203.
The unit vector which is orthogonal to the vector $$3\hat i + 2\hat j + 6\hat k$$ and is coplanar with the vectors $$2\hat i + \hat j + \hat k$$ and $$\hat i - \hat j + \hat k$$ is :
A
$$\frac{{2\hat i - 6\hat j + \hat k}}{{\sqrt {41} }}$$
B
$$\frac{{2\hat i - 3\hat j}}{{\sqrt {13} }}$$
C
$$\frac{{3\hat i - \hat k}}{{\sqrt {10} }}$$
D
$$\frac{{4\hat i + 3\hat j - 3\hat k}}{{\sqrt {34} }}$$
Answer :
$$\frac{{3\hat i - \hat k}}{{\sqrt {10} }}$$
Any vector coplanar to $${\vec a}$$ and $${\vec b}$$ can be written as
$$\eqalign{
& \vec r = \vec a + \lambda \vec b \cr
& \vec r = \left( {1 + 2\lambda } \right)\hat i + \left( { - 1 + \lambda } \right)\hat j + \left( {1 + \lambda } \right)\hat k \cr} $$
Since $${\vec r}$$ is orthogonal to $$5\hat i + 2\hat j + 6\hat k$$
$$\eqalign{
& \Rightarrow 5\left( {1 + 2\lambda } \right) + 2\left( { - 1 + \lambda } \right) + 6\left( {1 + \lambda } \right) = 0 \cr
& \Rightarrow 9 + 18\lambda = 0 \cr
& \Rightarrow \lambda = - \frac{1}{2} \cr
& \therefore \,\vec r{\text{ is 3}}\hat j - \hat k \cr} $$
Since $${\hat r}$$ is a unit vector, $$\therefore \,\,\hat r = \frac{{{\text{3}}\hat j - \hat k}}{{\sqrt {10} }}$$
204.
The vectors $$\overrightarrow {AB} = 3\hat i + 5\hat j + 4\hat k$$ and $$\overrightarrow {AC} = 5\hat i - 5\hat j + 2\hat k$$ are the sides of a triangle $$ABC.$$ The length of the median through $$A$$ is :
As $$c$$ is coplanar with $$a$$ and $$b,$$ we take,
$$c = \alpha a + \beta b.....(1)$$
where $$\alpha ,\beta $$ are scalars.
As $$c$$ is perpendicular to $$a,\,c.a=0$$
$$ \therefore $$ From (1) we get, $$0 = \alpha \,a.a + \beta \,b.a$$
$$\eqalign{
& \Rightarrow 0 = \alpha \left( 6 \right) + \beta \left( {2 + 2 - 1} \right) = 3\left( {2\alpha + \beta } \right) \Rightarrow \beta = - 2\alpha \cr
& {\text{Thus, }}c = \alpha \left( {a - 2b} \right) = \alpha \left( { - 3j + 3k} \right) = 3\alpha \left( { - j + k} \right) \cr
& \Rightarrow {\left| {\vec c} \right|^2} = 9{\alpha ^2}\left( {1 + 1} \right) = 18{\alpha ^2}\,\, \Rightarrow 1 = 18{\alpha ^2} \cr
& \Rightarrow \alpha = \pm \frac{1}{{3\sqrt 2 }} \cr
& \therefore c = \pm \frac{1}{{\sqrt 2 }}\left( { - j + k} \right) \cr} $$
Thus, we may take $$c = \frac{1}{{\sqrt 2 }}\left( { - j + k} \right).$$
206.
Let $$\overrightarrow a = \overrightarrow i - 2\overrightarrow j + 3\overrightarrow k ,\,\overrightarrow b = 2\overrightarrow i + 3\overrightarrow j - \overrightarrow k $$ and $$\overrightarrow c = \lambda \overrightarrow i + \overrightarrow j + \left( {2\lambda - 1} \right)\overrightarrow k .$$ If $$\overrightarrow c $$ is parallel to the plane of the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ then $$\lambda $$ is :
$$\eqalign{
& \overrightarrow c ||{\text{ the plane of }}\overrightarrow a {\text{ and }}\overrightarrow b \Rightarrow \overrightarrow c \bot \overrightarrow a \times \overrightarrow b \cr
& \therefore \,\overrightarrow a \times \overrightarrow b .\overrightarrow c = 0 \cr
& {\text{or }}\left( {\overrightarrow i - 2\overrightarrow j + 3\overrightarrow k } \right) \times \left( {2\overrightarrow i + 3\overrightarrow j - \overrightarrow k } \right).\left\{ {\lambda \overrightarrow i + \overrightarrow j + \left( {2\lambda - 1} \right)\overrightarrow k } \right\} = 0 \cr
& {\text{or }}\left( { - 7\overrightarrow i + 7\overrightarrow j + 7\overrightarrow k } \right).\left\{ {\lambda \overrightarrow i + \overrightarrow j + \left( {2\lambda - 1} \right)\overrightarrow k } \right\} = 0 \cr
& {\text{or }} - 7\lambda + 7 + 7\left( {2\lambda - 1} \right) = 0 \cr
& {\text{or }}\lambda = 0 \cr} $$
207.
Let $$\vec a,\,\vec b$$ and $$\vec c$$ be three non-zero vectors such that no two of these are collinear. If the vector $$\vec a + 2\vec b$$ is collinear with $$\vec c$$ and $$\vec b + 3\vec c$$ is collinear with $$\vec a$$ ($$\lambda $$ being some non-zero scalar) then $$\vec a + 2\vec b + 6\vec c$$ equals
Let $$\vec a + 2\vec b = t\vec c$$ and $$\vec b + 3\vec c = s\vec a,$$ where $$t$$ and $$s$$ are scalars. Adding, we get
$$\eqalign{
& \vec a + 3\vec b + 3\vec c = t\vec c + s\vec a \cr
& \Rightarrow \vec a + 2\vec b + 6\vec c = t\vec c + s\vec a - \vec b + 3\vec c \cr
& \Rightarrow \vec a + 2\vec b + 6\vec c = t\vec c + \left( {\vec b + 3\vec c} \right) - \vec b + 3\vec c \cr
& \Rightarrow \vec a + 2\vec b + 6\vec c = \left( {t + 6} \right)\vec c\,\,\,\,\,\,\,\left[ {{\text{using }}s\vec a = \vec b + 3\vec c} \right] \cr
& \Rightarrow \vec a + 2\vec b + 6\vec c = \lambda \vec c,{\text{ where }}\lambda = t + 6 \cr} $$
208.
If $$\overrightarrow {{r_1}} = \lambda \hat i + 2\hat j + \hat k,\,\overrightarrow {{r_2}} = \hat i + \left( {2 - \lambda } \right)\hat j + 2\hat k$$ are such that $$\left| {\overrightarrow {{r_1}} } \right| > \left| {\overrightarrow {{r_2}} } \right|,$$ then $$\lambda $$ satisfies which one of the following ?
209.
If $$\vec a,\,\vec b$$ and $$\vec c$$ are unit vectors, then $${\left| {\vec a - \vec b} \right|^2} + {\left| {\vec b - \vec c} \right|^2} + {\left| {\vec c - \vec a} \right|^2}$$ does NOT exceed :