201. Given that the vectors $$\overrightarrow \alpha $$ and $$\overrightarrow \beta $$ are non-collinear. The values of $$x$$ and $$y$$ for which $$\overrightarrow u - \overrightarrow v = \overrightarrow w $$   holds true if $$\overrightarrow u = 2x\overrightarrow \alpha + y\overrightarrow \beta ,\,\overrightarrow v = 2y\overrightarrow \alpha + 3x\overrightarrow \beta $$       and $$\overrightarrow w = 2\overrightarrow \alpha - 5\overrightarrow \beta ,$$    are :

A $$x = 2,\,y = 1$$
B $$x = 1,\,y = 2$$
C $$x = - 2,\,y = 1$$
D $$x = - 2,\,y = - 1$$
Answer :   $$x = 2,\,y = 1$$
Discuss Question

202. If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are three non-coplanar vectors, then the value of $$\frac{{\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)}}{{\left( {\overrightarrow c \times \overrightarrow a } \right).\overrightarrow b }} + \frac{{\overrightarrow b .\left( {\overrightarrow a \times \overrightarrow c } \right)}}{{\overrightarrow c .\left( {\overrightarrow a \times \overrightarrow b } \right)}}$$       is :

A 0
B 2
C 1
D none of these
Answer :   0
Discuss Question

203. The unit vector which is orthogonal to the vector $$3\hat i + 2\hat j + 6\hat k$$     and is coplanar with the vectors $$2\hat i + \hat j + \hat k$$   and $$\hat i - \hat j + \hat k$$   is :

A $$\frac{{2\hat i - 6\hat j + \hat k}}{{\sqrt {41} }}$$
B $$\frac{{2\hat i - 3\hat j}}{{\sqrt {13} }}$$
C $$\frac{{3\hat i - \hat k}}{{\sqrt {10} }}$$
D $$\frac{{4\hat i + 3\hat j - 3\hat k}}{{\sqrt {34} }}$$
Answer :   $$\frac{{3\hat i - \hat k}}{{\sqrt {10} }}$$
Discuss Question

204. The vectors $$\overrightarrow {AB} = 3\hat i + 5\hat j + 4\hat k$$     and $$\overrightarrow {AC} = 5\hat i - 5\hat j + 2\hat k$$     are the sides of a triangle $$ABC.$$   The length of the median through $$A$$ is :

A $$\sqrt {13} {\text{ units}}$$
B $${\text{2}}\sqrt 5 {\text{ units}}$$
C $$5{\text{ units}}$$
D $${\text{10 units}}$$
Answer :   $$5{\text{ units}}$$
Discuss Question

205. Let $$a=2i+j+k,\,b=i+2j-k$$      and a unit vector $$c$$ be coplanar. If $$c$$ is perpendicular to $$a,$$  then $$c=?$$

A $$\frac{1}{{\sqrt 2 }}\left( { - j + k} \right)$$
B $$\frac{1}{{\sqrt 3 }}\left( {- i - j - k} \right)$$
C $$\frac{1}{{\sqrt 5 }}\left( { i - 2j} \right)$$
D $$\frac{1}{{\sqrt 3 }}\left( { i - j - k} \right)$$
Answer :   $$\frac{1}{{\sqrt 2 }}\left( { - j + k} \right)$$
Discuss Question

206. Let $$\overrightarrow a = \overrightarrow i - 2\overrightarrow j + 3\overrightarrow k ,\,\overrightarrow b = 2\overrightarrow i + 3\overrightarrow j - \overrightarrow k $$        and $$\overrightarrow c = \lambda \overrightarrow i + \overrightarrow j + \left( {2\lambda - 1} \right)\overrightarrow k .$$      If $$\overrightarrow c $$ is parallel to the plane of the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ then $$\lambda $$ is :

A $$1$$
B $$0$$
C $$ - 1$$
D $$2$$
Answer :   $$0$$
Discuss Question

207. Let $$\vec a,\,\vec b$$  and $$\vec c$$ be three non-zero vectors such that no two of these are collinear. If the vector $$\vec a + 2\vec b$$  is collinear with $$\vec c$$ and $$\vec b + 3\vec c$$  is collinear with $$\vec a$$ ($$\lambda $$ being some non-zero scalar) then $$\vec a + 2\vec b + 6\vec c$$   equals

A $$0$$
B $$\lambda \vec b$$
C $$\lambda \vec c$$
D $$\lambda \vec a$$
Answer :   $$\lambda \vec c$$
Discuss Question

208. If $$\overrightarrow {{r_1}} = \lambda \hat i + 2\hat j + \hat k,\,\overrightarrow {{r_2}} = \hat i + \left( {2 - \lambda } \right)\hat j + 2\hat k$$         are such that $$\left| {\overrightarrow {{r_1}} } \right| > \left| {\overrightarrow {{r_2}} } \right|,$$   then $$\lambda $$ satisfies which one of the following ?

A $$\lambda = 0$$  only
B $$\lambda = 1$$
C $$\lambda < 1$$
D $$\lambda > 1$$
Answer :   $$\lambda > 1$$
Discuss Question

209. If $$\vec a,\,\vec b$$  and $$\vec c$$ are unit vectors, then $${\left| {\vec a - \vec b} \right|^2} + {\left| {\vec b - \vec c} \right|^2} + {\left| {\vec c - \vec a} \right|^2}$$       does NOT exceed :

A $$4$$
B $$9$$
C $$8$$
D $$6$$
Answer :   $$9$$
Discuss Question

210. The distance between the lines $$\frac{{x - 4}}{2} = \frac{{y + 1}}{{ - 3}} = \frac{z}{6}$$     and $$\frac{x}{{ - 1}} = \frac{{y - 1}}{{\frac{3}{2}}} = \frac{{z + 1}}{{ - 3}}$$     is :

A $$\sqrt {\frac{{629}}{7}} $$
B $$\sqrt {\frac{{39}}{7}} $$
C $$\frac{{\sqrt {629} }}{7}$$
D none of these
Answer :   $$\frac{{\sqrt {629} }}{7}$$
Discuss Question


Practice More MCQ Question on Maths Section