151. $$\left( {\overrightarrow a .\overrightarrow i } \right)\overrightarrow i + \left( {\overrightarrow a .\overrightarrow j } \right)\overrightarrow j + \left( {\overrightarrow a .\overrightarrow k } \right)\overrightarrow k $$        is equal to :

A $$\overrightarrow i + \overrightarrow j + \overrightarrow k $$
B $$\overrightarrow a $$
C $$3\overrightarrow a $$
D none of these
Answer :   $$\overrightarrow a $$
Discuss Question

152. If $$\vec u,\,\vec v$$  and $${\vec w}$$ are three non-coplanar vectors, then $$\left( {\vec u + \vec v - \vec w} \right).\left( {\vec u - \vec v} \right) \times \left( {\vec v - \vec w} \right)$$       equals :

A $$3\vec u.\vec v \times \vec w$$
B $$0$$
C $$\vec u.\vec v \times \vec w$$
D $$\vec u.\vec w \times \vec v$$
Answer :   $$\vec u.\vec v \times \vec w$$
Discuss Question

153. The coplanar points $$A,\,B,\,C,\,D$$   are $$\left( {2 - x,\,2,\,2} \right),\,\left( {2,\,2 - y,\,2} \right),\,\left( {2,\,2,\,2 - z} \right)$$         and $$\left( {1,\,1,\,1} \right)$$   respectively. Then :

A $$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$$
B $$x + y + z = 1$$
C $$\frac{1}{{1 - x}} + \frac{1}{{1 - y}} + \frac{1}{{1 - z}} = 1$$
D none of these
Answer :   $$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$$
Discuss Question

154. The shortest distance between the lines $$x - y = 0 = 2x + z$$     and $$x + y - 2 = 0 = 3x - y + z - 1$$       is :

A $$\frac{1}{{\sqrt 3 }}$$
B $$\frac{1}{{2\sqrt 3 }}$$
C $$\frac{1}{2}$$
D $$1$$
Answer :   $$\frac{1}{{2\sqrt 3 }}$$
Discuss Question

155. Let $$\vec a = \hat i - \hat k,\,\vec b = x\hat i + \hat j + \left( {1 - x} \right)\hat k$$       and $$\vec c = y\hat i + x\hat j + \left( {1 + x - y} \right)\,\hat k.$$      Then $$\left[ {\vec a,\,\vec b,\,\vec c} \right]$$   depends on :

A only $$y$$
B only $$x$$
C both $$x$$ and $$y$$
D neither $$x$$ nor $$y$$
Answer :   neither $$x$$ nor $$y$$
Discuss Question

156. If $$\overrightarrow b $$ is a unit vector then $$\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b + \overrightarrow b \times \left( {\overrightarrow a \times \overrightarrow b } \right)$$      is equal to :

A $${\overrightarrow a ^2}\overrightarrow b $$
B $$\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow a $$
C $$\overrightarrow a $$
D none of these
Answer :   $$\overrightarrow a $$
Discuss Question

157. $$\overrightarrow a ,\overrightarrow b ,\,\overrightarrow c $$   are noncoplanar vectors and $$\overrightarrow p ,\overrightarrow q ,\,\overrightarrow r $$   are defined as $$\overrightarrow p = \frac{{\overrightarrow b \times \overrightarrow c }}{{\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]}},\,\overrightarrow q = \frac{{\overrightarrow c \times \overrightarrow a }}{{\left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right]}},\,\overrightarrow r = \frac{{\overrightarrow a \times \overrightarrow b }}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}}.\left( {\overrightarrow a + \overrightarrow b } \right).\overrightarrow p + \left( {\overrightarrow b + \overrightarrow c } \right).\overrightarrow q + \left( {\overrightarrow c + \overrightarrow a } \right).\overrightarrow r $$                     is equal to :

A 0
B 1
C 2
D 3
Answer :   3
Discuss Question

158. $$ABC$$  is an equilateral triangle of side $$a.$$  The value of $$\overrightarrow {AB} .\overrightarrow {BC} + \overrightarrow {BC} .\overrightarrow {CA} + \overrightarrow {CA} .\overrightarrow {AB} $$       is equal to :

A $$\frac{{3{a^2}}}{2}$$
B $$3{a^2}$$
C $$ - \frac{{3{a^2}}}{2}$$
D none of these
Answer :   $$ - \frac{{3{a^2}}}{2}$$
Discuss Question

159. The position vectors of three points are $$2\overrightarrow a - \overrightarrow b + 3\overrightarrow c ,\,\overrightarrow a - 2\overrightarrow b + \lambda \overrightarrow c $$      and $$\mu \overrightarrow a - 5\overrightarrow b $$   where $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are noncoplanar vectors. The points are collinear when :

A $$\lambda = - 2,\,\mu = \frac{9}{4}$$
B $$\lambda = - \frac{9}{4},\,\mu = 2$$
C $$\lambda = \frac{9}{4},\,\mu = - 2$$
D none of these
Answer :   $$\lambda = \frac{9}{4},\,\mu = - 2$$
Discuss Question

160. If $$\overrightarrow a = \hat i + \hat j + \hat k,\,\overrightarrow b = 4\hat i + 3\hat j + 4\hat k$$       and $$\overrightarrow c = \hat i + \alpha \hat j + \beta \hat k$$    are coplanar and $$\left| {\overrightarrow c } \right| = \sqrt 3 ,$$   then :

A $$\alpha = \sqrt 2 ,\,\beta = 1$$
B $$\alpha = 1,\,\beta = \pm 1$$
C $$\alpha = \pm 1,\,\beta = 1$$
D $$\alpha = \pm 1,\,\beta = - 1$$
Answer :   $$\alpha = \pm 1,\,\beta = 1$$
Discuss Question


Practice More MCQ Question on Maths Section