151.
$$\left( {\overrightarrow a .\overrightarrow i } \right)\overrightarrow i + \left( {\overrightarrow a .\overrightarrow j } \right)\overrightarrow j + \left( {\overrightarrow a .\overrightarrow k } \right)\overrightarrow k $$ is equal to :
A
$$\overrightarrow i + \overrightarrow j + \overrightarrow k $$
Let $$\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow {k.} $$ Then $$\overrightarrow a .\overrightarrow i = x,\,\overrightarrow a .\overrightarrow j = y,\,\overrightarrow a .\overrightarrow k = z.$$
152.
If $$\vec u,\,\vec v$$ and $${\vec w}$$ are three non-coplanar vectors, then $$\left( {\vec u + \vec v - \vec w} \right).\left( {\vec u - \vec v} \right) \times \left( {\vec v - \vec w} \right)$$ equals :
155.
Let $$\vec a = \hat i - \hat k,\,\vec b = x\hat i + \hat j + \left( {1 - x} \right)\hat k$$ and $$\vec c = y\hat i + x\hat j + \left( {1 + x - y} \right)\,\hat k.$$ Then $$\left[ {\vec a,\,\vec b,\,\vec c} \right]$$ depends on :
\[\begin{array}{l}
\vec a = \hat i - \hat k,\,\vec b = x\hat i + \hat j + \left( {1 - x} \right)\hat k\,\,{\rm{and}}\\
\vec c = y\hat i + x\hat j + \left( {1 + x - y} \right)\,\hat k\\
\left[ {\vec a,\,\vec b,\,\vec c} \right] = \vec a.\vec b \times \vec c = \left| \begin{array}{l}
1\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,\,\, - 1\\
x\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,1 - x\\
y\,\,\,\,\,\,\,\,x\,\,\,\,1 + x - y
\end{array} \right|\\
= 1\left[ {1 + x - y - x + {x^2}} \right] - \left[ { - {x^2} - y} \right]\\
= 1 - y + {x^2} - {x^2} + y = 1
\end{array}\]
Hence $$\left[ {\vec a,\,\vec b,\,\vec c} \right]$$ is independent of $$x$$ and $$y$$ both.
156.
If $$\overrightarrow b $$ is a unit vector then $$\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b + \overrightarrow b \times \left( {\overrightarrow a \times \overrightarrow b } \right)$$ is equal to :
A
$${\overrightarrow a ^2}\overrightarrow b $$
B
$$\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow a $$
Expression $$ = \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b + \left( {\overrightarrow b .\overrightarrow b } \right)\overrightarrow a - \left( {\overrightarrow b .\overrightarrow a } \right)\overrightarrow b = {\overrightarrow b ^2}\overrightarrow a = \overrightarrow a \,\left( {\because \,\overrightarrow b {\text{ is a unit vector}}} \right)$$
157.
$$\overrightarrow a ,\overrightarrow b ,\,\overrightarrow c $$ are noncoplanar vectors and $$\overrightarrow p ,\overrightarrow q ,\,\overrightarrow r $$ are defined as $$\overrightarrow p = \frac{{\overrightarrow b \times \overrightarrow c }}{{\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]}},\,\overrightarrow q = \frac{{\overrightarrow c \times \overrightarrow a }}{{\left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right]}},\,\overrightarrow r = \frac{{\overrightarrow a \times \overrightarrow b }}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}}.\left( {\overrightarrow a + \overrightarrow b } \right).\overrightarrow p + \left( {\overrightarrow b + \overrightarrow c } \right).\overrightarrow q + \left( {\overrightarrow c + \overrightarrow a } \right).\overrightarrow r $$ is equal to :
$$\eqalign{
& {\text{Expression}} = \frac{{\left( {\overrightarrow a + \overrightarrow b } \right).\left( {\overrightarrow b \times \overrightarrow c } \right)}}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}} + \frac{{\left( {\overrightarrow b + \overrightarrow c } \right).\left( {\overrightarrow c \times \overrightarrow a } \right)}}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}} + \frac{{\left( {\overrightarrow c + \overrightarrow a } \right).\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}} + \frac{{\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]}}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}} + \frac{{\left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right]}}{{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]}} \cr
& = 1 + 1 + 1 \cr
& = 3 \cr} $$
158.
$$ABC$$ is an equilateral triangle of side $$a.$$ The value of $$\overrightarrow {AB} .\overrightarrow {BC} + \overrightarrow {BC} .\overrightarrow {CA} + \overrightarrow {CA} .\overrightarrow {AB} $$ is equal to :
159.
The position vectors of three points are $$2\overrightarrow a - \overrightarrow b + 3\overrightarrow c ,\,\overrightarrow a - 2\overrightarrow b + \lambda \overrightarrow c $$ and $$\mu \overrightarrow a - 5\overrightarrow b $$ where $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are noncoplanar vectors. The points are collinear when :
If the points be $$A,\,B$$ and $$C$$ respectively then
$$\eqalign{
& \overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow a - 2\overrightarrow b + \lambda \overrightarrow c - \left( {2\overrightarrow a - \overrightarrow b + 3\overrightarrow c } \right) = - \overrightarrow a - \overrightarrow b + \left( {\lambda - 3} \right)\overrightarrow c \cr
& \overrightarrow {AC} = \overrightarrow {OC} - \overrightarrow {OA} = \mu \overrightarrow a - 5\overrightarrow b - \left( {2\overrightarrow a - \overrightarrow b + 3\overrightarrow c } \right) = \left( {\mu - 2} \right)\overrightarrow a - 4\overrightarrow b - 3\overrightarrow c \cr} $$
The points are collinear if $$\overrightarrow {AB} = t\overrightarrow {AC} $$
$$\eqalign{
& \Rightarrow - 1 = t\left( {\mu - 2} \right),\,\, - 1 = - 4t,\,\,\lambda - 3 = - 3t \cr
& \therefore \,t = \frac{1}{4},{\text{ and }} - 1 = \frac{1}{4}\left( {\mu - 2} \right),\,\lambda - 3 = - \frac{3}{4} \cr} $$
160.
If $$\overrightarrow a = \hat i + \hat j + \hat k,\,\overrightarrow b = 4\hat i + 3\hat j + 4\hat k$$ and $$\overrightarrow c = \hat i + \alpha \hat j + \beta \hat k$$ are coplanar and $$\left| {\overrightarrow c } \right| = \sqrt 3 ,$$ then :