171. The angles of a triangle, two of whose sides are represented by the vectors $$\sqrt 3 \left( {\overrightarrow a \times \overrightarrow b } \right)$$   and $$\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow a $$    where $$\overrightarrow b $$ is a non-zero vector and $$\overrightarrow a $$ is a unit vector are :

A $${\tan ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right);\,{\tan ^{ - 1}}\left( {\frac{1}{2}} \right);\,{\tan ^{ - 1}}\left( {\frac{{\sqrt 3 + 2}}{{1 - 2\sqrt 3 }}} \right)$$
B $${\tan ^{ - 1}}\left( {\sqrt 3 } \right);\,{\tan ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right);\,{\cot ^{ - 1}}\left( 0 \right)$$
C $${\tan ^{ - 1}}\left( {\sqrt 3 } \right);\,{\tan ^{ - 1}}\left( 2 \right);\,{\tan ^{ - 1}}\left( {\frac{{\sqrt 3 + 2}}{{2\sqrt 3 - 1}}} \right)$$
D $${\tan ^{ - 1}}\left( {\sqrt 3 } \right);\,{\tan ^{ - 1}}\left( {\sqrt 2 } \right);\,{\tan ^{ - 1}}\left( {\frac{{\sqrt 2 + 3}}{{3\sqrt 2 - 1}}} \right)$$
Answer :   $${\tan ^{ - 1}}\left( {\sqrt 3 } \right);\,{\tan ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right);\,{\cot ^{ - 1}}\left( 0 \right)$$
Discuss Question

172. $$ABCDEF$$   is a regular hexagon where centre $$O$$ is the origin. If the position vectors of $$A$$ and $$B$$ are $$\overrightarrow i - \overrightarrow j + 2\overrightarrow k $$   and $$2\overrightarrow i + \overrightarrow j + \overrightarrow k $$   respectively then $$\overrightarrow {BC} $$  is equal to :

A $$\overrightarrow i - \overrightarrow j + 2\overrightarrow k $$
B $$ - \overrightarrow i + \overrightarrow j - 2\overrightarrow k $$
C $$3\overrightarrow i + 3\overrightarrow j - 4\overrightarrow k $$
D none of these
Answer :   $$ - \overrightarrow i + \overrightarrow j - 2\overrightarrow k $$
Discuss Question

173. If $$\vec a,\,\vec b,\,\vec c$$   are three non-zero, non-coplanar vectors and
$$\eqalign{ & \overrightarrow {{b_1}} = \overrightarrow b - \frac{{\overrightarrow b .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,\,\,\overrightarrow {{b_2}} = \overrightarrow b + \frac{{\overrightarrow b .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a , \cr & \overrightarrow {{c_1}} = \overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a + \frac{{\overrightarrow b .\overrightarrow c }}{{{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow {{b_1}} ,\,\,\overrightarrow {{c_2}} = \overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - \frac{{\overrightarrow {{b_1}} .\overrightarrow c }}{{{{\left| {\overrightarrow {{b_1}} } \right|}^2}}}\overrightarrow {{b_1}} , \cr & \overrightarrow {{c_3}} = \overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a + \frac{{\overrightarrow b .\overrightarrow c }}{{{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow {{b_1}} ,\,\,\overrightarrow {{c_4}} = \overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a = \frac{{\overrightarrow b .\overrightarrow c }}{{{{\left| {\vec b} \right|}^2}}}\overrightarrow {{b_1}} , \cr} $$
then the set of orthogonal vectors is :

A $$\left( {\overrightarrow a ,\,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_3}} } \right)$$
B $$\left( {\overrightarrow a ,\,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_2}} } \right)$$
C $$\left( {\overrightarrow a ,\,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_1}} } \right)$$
D $$\left( {\overrightarrow a ,\,\overrightarrow {{b_2}} ,\,\overrightarrow {{c_2}} } \right)$$
Answer :   $$\left( {\overrightarrow a ,\,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_2}} } \right)$$
Discuss Question

174. Let $$\left| {\overrightarrow a } \right| = 1,\,\left| {\overrightarrow b } \right| = \sqrt 2 ,\,\left| {\overrightarrow c } \right| = \sqrt 3 ,$$       and $$\,\overrightarrow a \bot \left( {\overrightarrow b + \overrightarrow c } \right),\,\overrightarrow b \bot \left( {\overrightarrow c + \overrightarrow a } \right)$$       and $$\overrightarrow c \bot \left( {\overrightarrow a + \overrightarrow b } \right).$$    Then $$\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|$$   is :

A $$\sqrt 6 $$
B $$6$$
C $$\sqrt {14} $$
D none of these
Answer :   $$\sqrt 6 $$
Discuss Question

175. What is the vector equally inclined to the vectors $$\hat i + 3\hat j$$   and $$3\hat i + \hat j\,?$$

A $$\hat i + \hat j$$
B $$2\hat i - \hat j$$
C $$2\hat i + \hat j$$
D none of these
Answer :   $$\hat i + \hat j$$
Discuss Question

176. If $$\overrightarrow a + \overrightarrow b \bot \overrightarrow a $$   and $$\left| {\overrightarrow b } \right| = \sqrt 2 \left| {\overrightarrow a } \right|$$   then :

A $$\left( {2\overrightarrow a + \overrightarrow b } \right)||\overrightarrow b $$
B $$\left( {2\overrightarrow a + \overrightarrow b } \right) \bot \overrightarrow b $$
C $$\left( {2\overrightarrow a - \overrightarrow b } \right) \bot \overrightarrow b $$
D $$\left( {2\overrightarrow a + \overrightarrow b } \right) \bot \overrightarrow a $$
Answer :   $$\left( {2\overrightarrow a + \overrightarrow b } \right) \bot \overrightarrow b $$
Discuss Question

177. If $$A = \left( {0,\,0,\,2} \right),\,B = \left( {\sqrt 2 ,\,\sqrt 2 ,\,2} \right),\,C = \left( {\sqrt 2 ,\,\sqrt 2 ,\,0} \right)$$          and $$D = \left( {\frac{{8\sqrt 2 - 20}}{{17}},\,\frac{{12\sqrt 2 + 4}}{{17}},\,\frac{{20 - 8\sqrt 2 }}{{17}}} \right)$$        then $$ABCD$$   is a :

A rhombus
B square
C parallelogram
D none of these
Answer :   none of these
Discuss Question

178. If $$\vec a,\,\vec b,\,\vec c$$  are vectors such that $$\left[ {\vec a,\,\vec b,\,\vec c} \right] = 4$$   then $$\left[ {\vec a \times \,\vec b\,\,\vec b \times \,\vec c\,\,\vec c \times \,\vec a} \right] = ?$$

A $$16$$
B $$64$$
C $$4$$
D $$8$$
Answer :   $$16$$
Discuss Question

179. The value of $$'x'$$ for which the angle between the vectors $$\overrightarrow a = 2{x^2}\hat i + 4x\hat j + \hat k$$     and $$\overrightarrow b = 7\hat i - 2\hat j + x\hat k$$     is obtuse are :

A $$x < 0$$
B $$x > \frac{1}{2}$$
C $$0 < x < \frac{1}{2}$$
D $$x\, \in \,{\bf{R}}$$
Answer :   $$0 < x < \frac{1}{2}$$
Discuss Question

180. If $$\overrightarrow p ,\,\overrightarrow q $$  are two noncollinear and nonzero vectors such that $$\left( {b - c} \right)\overrightarrow p \times \overrightarrow q + \left( {c - a} \right)\overrightarrow p + \left( {a - b} \right)\overrightarrow q = 0,$$         where $$a,\,b,\,c$$  are the lengths of the sides of a triangle, then the triangle is :

A right angled
B obtuse angled
C equilateral
D isosceles
Answer :   equilateral
Discuss Question


Practice More MCQ Question on Maths Section