171.
The angles of a triangle, two of whose sides are represented by the vectors $$\sqrt 3 \left( {\overrightarrow a \times \overrightarrow b } \right)$$ and $$\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow a $$ where $$\overrightarrow b $$ is a non-zero vector and $$\overrightarrow a $$ is a unit vector are :
Let $$ABC$$ be a triangle in which the given vectors are represented by the sides $$AB$$ and $$AC$$
$$\eqalign{
& {\text{i}}{\text{.e}}{\text{., }}AB = \sqrt 3 \left( {a \times b} \right) \cr
& {\text{and }}AC = b - \left( {a.b} \right)a \cr
& \therefore \,AB.AC = \sqrt {3\left( {a \times b} \right)\left[ {b - \left( {a.b} \right)a} \right]} \cr
& = \sqrt {3\left[ {\left( {a \times b} \right).b\left( {a.b} \right)\left( {a \times b} \right)a} \right]} \cr
& = \sqrt {3\left( {0 - 0} \right)} \cr
& = 0 \cr
& {\text{Therefore, }}\angle BAC = {90^ \circ } \cr
& A{B^2} = {\left| {\sqrt 3 \left( {a \times b} \right)} \right|^2} = 3{\left( {a \times b} \right)^2} \cr
& A{C^2} = {\left[ {b - \left( {a.b} \right)a} \right]^2}......\left( {\text{i}} \right) \cr
& = {\left( b \right)^2} + {\left( {a.b} \right)^2}{a^2} - 2\left( {b.a} \right)\left( {a.b} \right) \cr
& = {\left( b \right)^2} + {\left( {a.b} \right)^2} - 2{\left( {a.b} \right)^2} \cr
& = {\left( b \right)^2} - {\left( {a.b} \right)^2} = {\left( b \right)^2} = {\left| a \right|^2}{\left| b \right|^2}{\cos ^2}\theta \cr
& = {\left( b \right)^2}\left[ {1 - {{\left| a \right|}^2}{{\cos }^2}\theta } \right] \cr
& = {\left( b \right)^2}\left( {1 - {{\cos }^2}\theta } \right) \cr
& = {\left( b \right)^2}{\sin ^2}\theta \cr
& = {\left| a \right|^2}{\left| b \right|^2}{\sin ^2}\theta \cr
& = {\left( {a \times b} \right)^2}......\left( {{\text{ii}}} \right) \cr
& {\text{Dividing equation }}\left( {\text{i}} \right){\text{ by }}\left( {{\text{ii}}} \right){\text{ we get}} \cr
& \frac{{A{B^2}}}{{A{C^2}}} = \frac{{3{{\left( {a \times b} \right)}^2}}}{{{{\left( {a \times b} \right)}^2}}} \cr
& \Rightarrow A{B^2} = 3.A{C^2} \cr
& \Rightarrow AB = \sqrt 3 AC \cr
& \tan \,C = \frac{{AB}}{{AC}} = \frac{{\sqrt 3 AC}}{{AC}} = \sqrt 3 \cr
& \therefore \,\angle C = {60^ \circ } \cr
& \therefore \,\angle A = {180^ \circ } - {90^ \circ } - {60^ \circ } = {30^ \circ } \cr
& {\text{Hence, angles of the triangle are 3}}{0^ \circ },\,{90^ \circ }{\text{ and }}{60^ \circ } \cr} $$
172.
$$ABCDEF$$ is a regular hexagon where centre $$O$$ is the origin. If the position vectors of $$A$$ and $$B$$ are $$\overrightarrow i - \overrightarrow j + 2\overrightarrow k $$ and $$2\overrightarrow i + \overrightarrow j + \overrightarrow k $$ respectively then $$\overrightarrow {BC} $$ is equal to :
A
$$\overrightarrow i - \overrightarrow j + 2\overrightarrow k $$
B
$$ - \overrightarrow i + \overrightarrow j - 2\overrightarrow k $$
C
$$3\overrightarrow i + 3\overrightarrow j - 4\overrightarrow k $$
D
none of these
Answer :
$$ - \overrightarrow i + \overrightarrow j - 2\overrightarrow k $$
$$\eqalign{
& \overrightarrow {OA} = \overrightarrow i - \overrightarrow j + 2\overrightarrow k \,\,\,\,\,\,\,\,\,\,\overrightarrow {OB} = 2\overrightarrow i + \overrightarrow j + \overrightarrow k \cr
& \therefore \overrightarrow {OC} = \overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow i + 2\overrightarrow j - \overrightarrow k \cr
& \therefore \,\overrightarrow {BC} = \overrightarrow {OC} - \overrightarrow {OB} = \left( {\overrightarrow i + 2\overrightarrow j - \overrightarrow k } \right) - \left( {2\overrightarrow i + \overrightarrow j + \overrightarrow k } \right) \cr
& = - \overrightarrow i + \overrightarrow j - 2\overrightarrow k \cr} $$
173.
If $$\vec a,\,\vec b,\,\vec c$$ are three non-zero, non-coplanar vectors and
$$\eqalign{
& \overrightarrow {{b_1}} = \overrightarrow b - \frac{{\overrightarrow b .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,\,\,\overrightarrow {{b_2}} = \overrightarrow b + \frac{{\overrightarrow b .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a , \cr
& \overrightarrow {{c_1}} = \overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a + \frac{{\overrightarrow b .\overrightarrow c }}{{{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow {{b_1}} ,\,\,\overrightarrow {{c_2}} = \overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - \frac{{\overrightarrow {{b_1}} .\overrightarrow c }}{{{{\left| {\overrightarrow {{b_1}} } \right|}^2}}}\overrightarrow {{b_1}} , \cr
& \overrightarrow {{c_3}} = \overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a + \frac{{\overrightarrow b .\overrightarrow c }}{{{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow {{b_1}} ,\,\,\overrightarrow {{c_4}} = \overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a = \frac{{\overrightarrow b .\overrightarrow c }}{{{{\left| {\vec b} \right|}^2}}}\overrightarrow {{b_1}} , \cr} $$
then the set of orthogonal vectors is :
A
$$\left( {\overrightarrow a ,\,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_3}} } \right)$$
B
$$\left( {\overrightarrow a ,\,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_2}} } \right)$$
C
$$\left( {\overrightarrow a ,\,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_1}} } \right)$$
D
$$\left( {\overrightarrow a ,\,\overrightarrow {{b_2}} ,\,\overrightarrow {{c_2}} } \right)$$
We observe that
$$\eqalign{
& \overrightarrow a .\overrightarrow {{b_1}} = \overrightarrow a .\overrightarrow b - \left( {\frac{{\overrightarrow {b.} \overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}} \right)\overrightarrow a .\overrightarrow a = \overrightarrow a .\overrightarrow b - \overrightarrow a .\overrightarrow b = 0 \cr
& \overrightarrow a .\overrightarrow {{c_2}} = \overrightarrow a \left( {\overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - \frac{{\overrightarrow c .\overrightarrow {{b_1}} }}{{{{\left| {\overrightarrow {{b_1}} } \right|}^2}}}\overrightarrow {{b_1}} } \right) \cr
& = \overrightarrow a .\overrightarrow c - \overrightarrow c .\frac{{\overrightarrow a .\overrightarrow c }}{{{{\left| {\overrightarrow a } \right|}^2}}}{\left| {\overrightarrow a } \right|^2} - \frac{{\overrightarrow c .\overrightarrow {{b_1}} }}{{{{\left| {\overrightarrow {{b_1}} } \right|}^2}}}\left( {\overrightarrow a .\overrightarrow {{b_1}} } \right) \cr
& = \overrightarrow a .\overrightarrow c - \overrightarrow a .\overrightarrow c - 0\,\,\,\,\,\,\,\,\,\left[ {\because \,\,\overrightarrow a .\overrightarrow {{b_1}} = 0} \right] \cr
& = 0 \cr
& {\text{And }}\overrightarrow {{b_1}} .\overrightarrow {{c_2}} = \overrightarrow {{b_1}} .\left( {\overrightarrow c - \frac{{\overrightarrow c .\overrightarrow a }}{{{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - \frac{{\overrightarrow c .\overrightarrow {{b_1}} }}{{{{\left| {\overrightarrow {{b_1}} } \right|}^2}}}\overrightarrow {{b_1}} } \right) \cr
& = \overrightarrow {{b_1}} .\overrightarrow c - \frac{{\left( {\overrightarrow c .\overrightarrow a } \right)\left( {\overrightarrow {{b_1}} .\overrightarrow a } \right)}}{{{{\left| {\overrightarrow a } \right|}^2}}} - \frac{{\overrightarrow c .\overrightarrow {{b_1}} }}{{{{\left| {\overrightarrow {{b_1}} } \right|}^2}}}\overrightarrow {{b_1}} .\overrightarrow {{b_1}} \cr
& = \overrightarrow {{b_1}} .\overrightarrow c - 0 - \overrightarrow {{b_1}} .\overrightarrow c \,\,\,\,\,\,\,\,\,\left[ {{\text{Using }}\overrightarrow {{b_1}} .\overrightarrow a = 0} \right] \cr
& = 0 \cr} $$
Hence $$\overrightarrow a .\overrightarrow {{b_1}} = \overrightarrow a .\overrightarrow {{c_2}} = \overrightarrow {{b_1}} .\overrightarrow {{c_2}} = 0$$
$$ \Rightarrow \left( {\overrightarrow a ,\overrightarrow {{b_1}} ,\,\overrightarrow {{c_2}} } \right)$$ is a set of orthogonal vectors.
174.
Let $$\left| {\overrightarrow a } \right| = 1,\,\left| {\overrightarrow b } \right| = \sqrt 2 ,\,\left| {\overrightarrow c } \right| = \sqrt 3 ,$$ and $$\,\overrightarrow a \bot \left( {\overrightarrow b + \overrightarrow c } \right),\,\overrightarrow b \bot \left( {\overrightarrow c + \overrightarrow a } \right)$$ and $$\overrightarrow c \bot \left( {\overrightarrow a + \overrightarrow b } \right).$$ Then $$\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|$$ is :
$$\overrightarrow a .\left( {\overrightarrow b + \overrightarrow c } \right) = 0{\text{ or }}\overrightarrow a .\overrightarrow b + \overrightarrow a .\overrightarrow c = 0$$
Similarly, we get $$\overrightarrow b .\overrightarrow c + \overrightarrow b .\overrightarrow a = 0$$ and $$\overrightarrow c .\overrightarrow a + \overrightarrow c .\overrightarrow b = 0$$
Adding these, $$\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a = 0$$
$$\eqalign{
& {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)^2} \cr
& = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2\left( {\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a } \right) \cr
& = 1 + 2 + 3 + 0 \cr
& = 6 \cr
& \therefore \,\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 6 \cr} $$
175.
What is the vector equally inclined to the vectors $$\hat i + 3\hat j$$ and $$3\hat i + \hat j\,?$$
Let the required vector be $$\hat i + \hat j$$
Since the vector $$\hat i + \hat j$$ is equally inclined to the vectors $$\hat i + 3\hat j$$ and $$3\hat i + \hat j$$ therefore
Angle between $$\hat i + \hat j$$ and $$\hat i + 3\hat j = {\theta _1}$$ is equal to angle between $$\hat i + \hat j$$ and $$3\hat i + \hat j = {\theta _2}$$
$$\therefore $$ Angle between $$\hat i + \hat j$$ and $$\hat i + 3\hat j$$
$$\eqalign{
& = {\cos ^{ - 1}}\left[ {\frac{{\left( 1 \right)\left( 1 \right) + \left( 1 \right)\left( 3 \right)}}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} \sqrt {{{\left( 1 \right)}^2} + {{\left( 3 \right)}^2}} }}} \right] \cr
& = {\cos ^{ - 1}}\left[ {\frac{{1 + 3}}{{\sqrt 2 \sqrt {10} }}} \right] \cr
& = {\cos ^{ - 1}}\left[ {\frac{4}{{\sqrt 2 \sqrt {10} }}} \right] \cr
& = {\cos ^{ - 1}}\left[ {\frac{2}{{\sqrt 5 }}} \right] \cr
& {\text{and angle between }}\hat i + \hat j\,{\text{and}}\,3\hat i + \hat j \cr
& = {\cos ^{ - 1}}\left| {\frac{{1 + 3}}{{\sqrt {10} \sqrt 2 }}} \right| \cr
& = {\cos ^{ - 1}}\left( {\frac{4}{{\sqrt 2 \sqrt {10} }}} \right) \cr
& = {\cos ^{ - 1}}\left( {\frac{2}{{\sqrt 5 }}} \right) \cr
& {\text{Hence, required vector is }}\hat i + \hat j \cr} $$
176.
If $$\overrightarrow a + \overrightarrow b \bot \overrightarrow a $$
and $$\left| {\overrightarrow b } \right| = \sqrt 2 \left| {\overrightarrow a } \right|$$ then :
A
$$\left( {2\overrightarrow a + \overrightarrow b } \right)||\overrightarrow b $$
B
$$\left( {2\overrightarrow a + \overrightarrow b } \right) \bot \overrightarrow b $$
C
$$\left( {2\overrightarrow a - \overrightarrow b } \right) \bot \overrightarrow b $$
D
$$\left( {2\overrightarrow a + \overrightarrow b } \right) \bot \overrightarrow a $$
Answer :
$$\left( {2\overrightarrow a + \overrightarrow b } \right) \bot \overrightarrow b $$
$$\eqalign{
& {\text{Here, }}\overrightarrow a .\left( {\overrightarrow a + \overrightarrow b } \right) = 0{\text{ or }}{\left| {\overrightarrow a } \right|^2} + \overrightarrow a .\overrightarrow b = 0\,\,\,{\text{or }}\frac{1}{2}{\text{ }}{\left| {\overrightarrow b } \right|^2} + \overrightarrow a .\overrightarrow b = 0 \cr
& \left( {2\overrightarrow a + \overrightarrow b } \right).\overrightarrow b = 2\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow b } \right|^2} = 2\left\{ {\overrightarrow a .\overrightarrow b + \frac{1}{2}{{\left| {\overrightarrow b } \right|}^2}} \right\} = 0 \cr
& \therefore \,\left( {2\overrightarrow a + \overrightarrow b } \right) \bot \overrightarrow b \cr
& \left( {2\overrightarrow a - \overrightarrow b } \right).\overrightarrow b = \,2\overrightarrow a .\overrightarrow b - {\left| {\overrightarrow b } \right|^2} = 2\overrightarrow a .\overrightarrow b + 2\overrightarrow a .\overrightarrow b = 4\overrightarrow a .\overrightarrow b \ne 0 \cr
& \overrightarrow a .\left( {2\overrightarrow a + \overrightarrow b } \right) = 2{\left| {\overrightarrow a } \right|^2} + \overrightarrow a .\overrightarrow b = {\left| {\overrightarrow a } \right|^2} + \left( {{{\left| {\overrightarrow a } \right|}^2} + \overrightarrow a .\overrightarrow b } \right) = {\left| {\overrightarrow a } \right|^2} \ne 0 \cr} $$
177.
If $$A = \left( {0,\,0,\,2} \right),\,B = \left( {\sqrt 2 ,\,\sqrt 2 ,\,2} \right),\,C = \left( {\sqrt 2 ,\,\sqrt 2 ,\,0} \right)$$ and $$D = \left( {\frac{{8\sqrt 2 - 20}}{{17}},\,\frac{{12\sqrt 2 + 4}}{{17}},\,\frac{{20 - 8\sqrt 2 }}{{17}}} \right)$$ then $$ABCD$$ is a :
178.
If $$\vec a,\,\vec b,\,\vec c$$ are vectors such that $$\left[ {\vec a,\,\vec b,\,\vec c} \right] = 4$$ then $$\left[ {\vec a \times \,\vec b\,\,\vec b \times \,\vec c\,\,\vec c \times \,\vec a} \right] = ?$$
$$\eqalign{
& {\text{We have, }}\left[ {\vec a \times \,\vec b\,\,\vec b \times \,\vec c\,\,\vec c \times \,\vec a} \right] \cr
& = \left( {\vec a \times \,\vec b} \right).\left\{ {\left( {\vec b \times \,\vec c} \right) \times \left( {\vec c \times \,\vec a} \right)} \right\} \cr
& = \left( {\vec a \times \,\vec b} \right).\left\{ {\left( {\vec m.\vec a} \right)\vec c - \left( {\vec m.\vec c} \right)\vec a} \right\}\,\,\,\,\,\,\left( {{\text{where }}\vec m = \vec b \times \,\vec c} \right) \cr
& = \left\{ {\left( {\vec a \times \,\vec b} \right).\vec c} \right\}.\left\{ {\vec a.\left( {\vec b \times \,\vec c} \right)} \right\} \cr
& = {\left[ {\vec a,\,\vec b,\,\vec c} \right]^2} = {4^2} = 16 \cr} $$
179.
The value of $$'x'$$ for which the angle between the vectors $$\overrightarrow a = 2{x^2}\hat i + 4x\hat j + \hat k$$ and $$\overrightarrow b = 7\hat i - 2\hat j + x\hat k$$ is obtuse are :
$$\eqalign{
& \overrightarrow a .\overrightarrow b = \left( {2{x^2}\hat i + 4x\hat j + \hat k} \right).\left( {7\hat i - 2\hat j + x\hat k} \right) \cr
& \Rightarrow \overrightarrow a .\overrightarrow b = 2{x^2}\left( 7 \right) + \left( {4x} \right)\left( { - 2} \right) + \left( 1 \right)\left( x \right) \cr
& \Rightarrow \overrightarrow a .\overrightarrow b = 14{x^2} - 7x \cr
& \hat i.\hat i = 1s = \hat j.\hat j = 1 \cr} $$
The angle between vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ is obtuse
$$\eqalign{
& \Rightarrow \overrightarrow a .\overrightarrow b < 0 \cr
& \Rightarrow 14{x^2} - 7x < 0 \cr
& \Rightarrow 7x\left( {2x - 1} \right) < 0 \cr
& \Rightarrow 14x\left( {x - \frac{1}{2}} \right) < 0 \cr} $$
$$ \Rightarrow x$$ lies between $$0$$ and $$\frac{1}{2}$$ (By the Method of Intervals) i.e., $$0 < x < \frac{1}{2}$$
Hence, the angle between the given vectors is obtuse if $$x\, \in \left( {0,\,\frac{1}{2}} \right).$$
180.
If $$\overrightarrow p ,\,\overrightarrow q $$ are two noncollinear and nonzero vectors such that $$\left( {b - c} \right)\overrightarrow p \times \overrightarrow q + \left( {c - a} \right)\overrightarrow p + \left( {a - b} \right)\overrightarrow q = 0,$$ where $$a,\,b,\,c$$ are the lengths of the sides of a triangle, then the triangle is :
$$\overrightarrow p \times \overrightarrow q $$ is perpendicular to $$\overrightarrow p $$ and $$\overrightarrow q .$$ So $$\overrightarrow p ,\,\overrightarrow q ,\,\overrightarrow p \times \overrightarrow q $$ are noncoplanar. Therefore, the given linear relation is possible only when $$b - c = 0,\,c - a = 0,\,a - b = 0.$$ So, $$a = b = c.$$