151. If $$\left| z \right| = 1\,\,{\text{and }}\omega = \frac{{z - 1}}{{z + 1}}$$    $$\left( {{\text{where }}z \ne - 1} \right),{\text{then Re}}\left( \omega \right)\,\,{\text{is}}$$

A $$0$$
B $$ - \frac{1}{{{{\left| {z + 1} \right|}^2}}}$$
C $$\left| {\frac{z}{{z + 1}}} \right|.\frac{1}{{{{\left| {z + 1} \right|}^2}}}$$
D $$\frac{{\sqrt 2 }}{{{{\left| {z + 1} \right|}^2}}}$$
Answer :   $$0$$
Discuss Question

152. What is $${\left[ {\frac{{\sin \frac{\pi }{6} + i\left( {1 - \cos \frac{\pi }{6}} \right)}}{{\sin \frac{\pi }{6} - i\left( {1 - \cos \frac{\pi }{6}} \right)}}} \right]^3}$$    where $$i = \sqrt { - 1} ,$$  equal to ?

A $$1$$
B $$- 1$$
C $$i$$
D $$ - i$$
Answer :   $$i$$
Discuss Question

153. If $$\omega$$ is imaginary cube root of unity, then $$\sin \left\{ {\left( {{\omega ^{13}} + {\omega ^2}} \right)\pi + \frac{\pi }{4}} \right\}$$     is equal to

A $$ - \frac{{\sqrt 3 }}{2}$$
B $$ - \frac{1}{{\sqrt 2 }}$$
C $$ \frac{1}{{\sqrt 2 }}$$
D $$\frac{{\sqrt 3 }}{2}$$
Answer :   $$ - \frac{1}{{\sqrt 2 }}$$
Discuss Question

154. If $$z = x + iy$$   satisfies $${\text{amp}}\left( {z - 1} \right) = {\text{amp}}\left( {z + 3i} \right)$$      then the value of $$\left( {x - 1} \right):y$$   is equal to

A $$2 : 1$$
B $$1 : 3$$
C $$- 1 : 3$$
D None of these
Answer :   $$1 : 3$$
Discuss Question

155. If $$z^2 + z +1 = 0,$$    where $$z$$ is complex number, then the value of $${\left( {z + \frac{1}{z}} \right)^2} + {\left( {{z^2} + \frac{1}{{{z^2}}}} \right)^2} + {\left( {{z^3} + \frac{1}{{{z^3}}}} \right)^2} + ..... + {\left( {{z^6} + \frac{1}{{{z^6}}}} \right)^2}\,{\text{is}}$$

A 18
B 54
C 6
D 12
Answer :   12
Discuss Question

156. If $$i = \sqrt { - 1} $$   then $$4 + 5{\left( { - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}} \right)^{334}} - 3{\left( {\frac{1}{2} + i\frac{{\sqrt 3 }}{2}} \right)^{365}}$$       is equal to

A $$1 - i\sqrt 3 $$
B $$ - 1 + i\sqrt 3 $$
C $$\sqrt {3}i $$
D $$ - i\sqrt 3 $$
Answer :   $$\sqrt {3}i $$
Discuss Question

157. The complex number $${z_1},{z_2}\,{\text{and }}{z_3}$$   satisfying $$\frac{{{z_1} - {z_3}}}{{{z_2} - {z_3}}} = \frac{{1 - i\sqrt 3 }}{2}$$    are the vertices of a triangle which is

A of area zero
B right - angled isosceles
C equilateral
D obtuse - angled isosceles
Answer :   equilateral
Discuss Question

158. The equation $$z\overline z + \left( {4 - 3i} \right)z + \left( {4 + 3i} \right)\overline z + 5 = 0$$       represents a circle whose radius is

A $$5$$
B $$2\sqrt 5 $$
C $$\frac{5}{2}$$
D None of these
Answer :   $$2\sqrt 5 $$
Discuss Question

159. If $$\left| {z + 4} \right| \leqslant 3,$$   then the maximum value of $$\left| {z + 1} \right|$$  is

A 6
B 0
C 4
D 10
Answer :   6
Discuss Question

160. If $$\omega = \frac{z}{{z - \frac{1}{3}i}}\,{\text{and }}\left| \omega \right| = 1,$$     then $$z$$ lies on

A an ellipse
B a circle
C a straight line
D a parabola
Answer :   a straight line
Discuss Question


Practice More MCQ Question on Maths Section