Question

$$\mathop {\lim }\limits_{x \to {{\frac{\pi }{2}}^ - }} {\left[ {1 + {{\left( {\cos \,x} \right)}^{\cos \,x}}} \right]^2}$$     is equal to :

A. does not exist
B. $$1$$
C. $$e$$
D. $$4$$  
Answer :   $$4$$
Solution :
$$\eqalign{ & {\text{Given }}\mathop {\lim }\limits_{x \to {{\frac{\pi }{2}}^ - }} {\left[ {1 + {{\left( {\cos \,x} \right)}^{\cos \,x}}} \right]^2} \cr & {\text{Let }}y = \mathop {\lim }\limits_{x \to {{\frac{\pi }{2}}^ - }} {\left( {\cos \,x} \right)^{\cos \,x}} \cr & \log \left( y \right) = \mathop {\lim }\limits_{x \to {{\frac{\pi }{2}}^ - }} \left( {\cos \,x} \right)\log \,\cos \,x \cr & \log \left( y \right) = \mathop {\lim }\limits_{x \to {{\frac{\pi }{2}}^ - }} \frac{{\log \left( {\cos \,x} \right)}}{{\sec \,\left( x \right)}}\,\,\,\left( {\frac{\infty }{\infty }{\text{ form}}} \right) \cr & {\text{Applying L'Hospital's rule}} \cr & \log \left( y \right) = \mathop {\lim }\limits_{x \to {{\frac{\pi }{2}}^ - }} \frac{{ - \sin \,x}}{{\cos \,x\left( {\sec \,x\,\tan \,x} \right)}} \cr & = \mathop {\lim }\limits_{x \to {{\frac{\pi }{2}}^ - }} \left( { - \cos \,x} \right) \cr & = 0 \cr & \therefore \,\,y = {e^0} = 1 \cr & {\text{Now, limit is}}\,{\left( {1 + 1} \right)^2} = {2^2} = 4 \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section