Question

$$\mathop {\lim }\limits_{x \to 0} {\left\{ {\frac{{1 + \tan \,x}}{{1 + \sin \,x}}} \right\}^{{\text{cosec}}\,x}}$$     is equal to :

A. $$\frac{1}{e}$$
B. $$1$$  
C. $$e$$
D. $${e^2}$$
Answer :   $$1$$
Solution :
$$\eqalign{ & {\text{Consider }}\mathop {\lim }\limits_{x \to 0} {\left\{ {\frac{{1 + \tan \,x}}{{1 + \sin \,x}}} \right\}^{{\text{cosec}}\,x}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{{{\left[ {{{\left( {1 + \frac{{\sin \,x}}{{\cos \,x}}} \right)}^{\frac{{\cos \,x}}{{\sin \,x}}}}} \right]}^{\frac{1}{{\cos \,x}}}}}}{{{{\left( {1 + \sin \,x} \right)}^{\frac{1}{{\sin \,x}}}}}} \cr & {\text{We know, }}\mathop {\lim }\limits_{n \to 0} {\left( {1 + \frac{1}{n}} \right)^n} = e \cr & \therefore \,\mathop {\lim }\limits_{x \to 0} \frac{{{{\left[ {{{\left( {1 + \frac{{\sin \,x}}{{\cos \,x}}} \right)}^{\frac{{\cos \,x}}{{\sin \,x}}}}} \right]}^{\frac{1}{{\cos \,x}}}}}}{{{{\left( {1 + \sin \,x} \right)}^{\frac{1}{{\sin \,x}}}}}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{{{\left[ {{{\left( {1 + \frac{1}{{\frac{{\cos \,x}}{{\sin \,x}}}}} \right)}^{\frac{{\cos \,x}}{{\sin \,x}}}}} \right]}^{\frac{1}{{\cos \,x}}}}}}{{\left[ {{{\left( {1 + \frac{1}{{{\text{cosec}}\,x}}} \right)}^{{\text{cosec}}\,x}}} \right]}} \cr & = \frac{{{e^{\mathop {\lim }\limits_{x \to 0} \frac{1}{{\cos \,x}}}}}}{e} \cr & = \frac{e}{e} \cr & = 1 \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section