Question

Which pairs of function is identical ?

A. $$f\left( x \right) = \sqrt {{x^2}} ,g\left( x \right) = x$$
B. $$f\left( x \right) = {\sin ^2}x + {\cos ^2}x,g\left( x \right) = 1$$  
C. $$f\left( x \right) = \frac{x}{x},g\left( x \right) = 1$$
D. None of these
Answer :   $$f\left( x \right) = {\sin ^2}x + {\cos ^2}x,g\left( x \right) = 1$$
Solution :
For checking equal function
$$\left( A \right)$$  Domain of $$f\left( x \right) = R$$   but range $$ = \left[ {0,\infty } \right)$$
Domain of $$g\left( x \right) = R,$$   range $$ = R$$
Domain same but range is different so it is not an equal function.
$$\left( B \right)$$  Domain of $$f\left( x \right) = R$$
Domain of $$g\left( x \right) = R$$
Domain and range both same so it is an equal function.
$$\left( C \right)$$  Domain of $$f\left( x \right) = R - \left\{ 0 \right\}$$
Domain of $$g\left( x \right) = R$$
Not equal function as domain is different.

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section