Question

Which one of the following is the unit vector perpendicular to both $$\overrightarrow a = - \hat i + \hat j + \hat k$$    and $$\overrightarrow b = \hat i - \hat j + \hat k\,?$$

A. $$\frac{{\hat i + \hat j}}{{\sqrt 2 }}$$  
B. $${\hat k}$$
C. $$\frac{{\hat j + \hat k}}{{\sqrt 2 }}$$
D. $$\frac{{\hat i - \hat j}}{{\sqrt 2 }}$$
Answer :   $$\frac{{\hat i + \hat j}}{{\sqrt 2 }}$$
Solution :
According to question
$$\overrightarrow a = - \hat i + \hat j + \hat k$$    and $$\overrightarrow b = \hat i - \hat j + \hat k$$
Then, \[a \times b = \left| \begin{array}{l} \,\,\,\hat i\,\,\,\,\,\,\,\hat j\,\,\,\,\,\,\,\,\hat k\\ - 1\,\,\,\,\,\,1\,\,\,\,\,\,1\\ \,\,\,1\,\, - 1\,\,\,\,1 \end{array} \right|\]
$$\eqalign{ & = \hat i\left[ {1 + 1} \right] - \hat j\left[ { - 1 - 1} \right] + \hat k\left[ {1 - 1} \right] \cr & = 2\hat i + 2\hat j + 0 \cr & = 2\left( {\hat i + \hat j} \right) \cr & {\text{and }}\left| {a \times b} \right| = \sqrt {4 + 4} = 2\sqrt 2 \cr} $$
$$\therefore $$  Required unit vector $$ = \pm \frac{{2\left( {\hat i + \hat j} \right)}}{{2\sqrt 2 }} = \pm \frac{{\hat i + \hat j}}{{\sqrt 2 }}$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section