Question

Which one of the following is one of the solutions of the equation of the equation $$\tan 2\theta \cdot \tan \theta = 1\,?$$

A. $$\frac{\pi }{12}$$
B. $$\frac{\pi }{6}$$  
C. $$\frac{\pi }{4}$$
D. $$\frac{\pi }{3}$$
Answer :   $$\frac{\pi }{6}$$
Solution :
$$\eqalign{ & \tan 2\theta \cdot \tan \theta = 1 \cr & \Rightarrow \frac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} \cdot \tan \theta = 1 \cr & \Rightarrow 2\,{\tan ^2}\theta = 1 - {\tan ^2}\theta \cr & \Rightarrow 3\,{\tan ^2}\theta = 1 \cr & \Rightarrow {\tan ^2}\theta = \frac{1}{3} = {\left( {\frac{1}{{\sqrt 3 }}} \right)^2} \cr & \Rightarrow {\tan ^2}\theta = {\tan ^2}\left( {{{30}^ \circ }} \right){\tan ^2}\left( {\frac{\pi }{6}} \right)\left[ {\because \theta = n\pi \pm \frac{\pi }{6}} \right]; \cr & \therefore \theta = \frac{\pi }{6} \cr} $$

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section