Question

Which of the following statements is incorrect :

A. $$x\,\operatorname{sgn} \,x = \left| x \right|$$
B. $$\left| x \right|\operatorname{sgn} \,x = x$$
C. $$x\left( {\operatorname{sgn} \,x} \right)\left( {\operatorname{sgn} \,x} \right) = x$$
D. $$\left| x \right|{\left( {\operatorname{sgn} \,x} \right)^3} = \left| x \right|$$  
Answer :   $$\left| x \right|{\left( {\operatorname{sgn} \,x} \right)^3} = \left| x \right|$$
Solution :
Checking the options
$$\eqalign{ & \left( {\bf{A}} \right){\text{ L}}{\text{.H}}{\text{.S}}{\text{.}} = x\,\operatorname{sgn} \,x = x \times \left( { + 1} \right) = x{\text{ if }}x > 0 \cr & x \times 0 = 0{\text{ if }}x = 0 \cr & x \times \left( { - 1} \right) = - x{\text{ if }}x < 0 \cr & = \left| x \right| = {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} \cr} $$
Therefore, statement is correct.
$$\eqalign{ & \left( {\bf{B}} \right){\text{ L}}{\text{.H}}{\text{.S}}{\text{.}} = \left| x \right|\operatorname{sgn} \,x = \left( { + x} \right) \times \left( { + 1} \right) = x{\text{ if }}x > 0 \cr & 0 \times 0 = 0{\text{ if }}x = 0 \cr & \left( { - x} \right) \times \left( { - 1} \right) = x{\text{ if }}x < 0 \cr} $$
Therefore, statement is correct.
$$\eqalign{ & \left( {\bf{C}} \right){\text{ L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {x\,\left( {\operatorname{sgn} \,x} \right)} \right) \times \operatorname{sgn} \,x \cr & = \left| x \right|\operatorname{sgn} \,x\,\,\,\,\,\left( {{\text{from }}\left( {\text{A}} \right)} \right) \cr & = x\,\,\,\,\,\left( {{\text{from }}\left( {\text{B}} \right)} \right) = {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} \cr} $$
Therefore, statement is correct.
$$\eqalign{ & \left( {\bf{D}} \right){\text{ L}}{\text{.H}}{\text{.S}}{\text{.}} = \left( {\left| x \right|\operatorname{sgn} \,x} \right){\left( {\operatorname{sgn} \,x} \right)^2} \cr & = x{\left( {\operatorname{sgn} \,x} \right)^2}\,\,\,\,\,\left( {{\text{from}}\left( {\text{B}} \right)} \right) \cr & = \left| x \right| \times \left( {\operatorname{sgn} \,x} \right)\,\,\,\,\,\left( {{\text{from}}\left( {\text{A}} \right)} \right) \cr & = x\,\,\,\,\,\left( {{\text{from}}\left( {\text{B}} \right)} \right) \ne {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} \cr} $$
Therefore, statement is incorrect.

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section