Question

Which of the following pieces of data does NOT uniquely determine an acute-angled triangle $$ABC$$  ($$R$$ being the radius of the circumcircle) ?

A. $$a,\sin A,\sin B$$
B. $$a, b, c$$
C. $$a,\sin B,R$$
D. $$a,\sin A,R$$  
Answer :   $$a,\sin A,R$$
Solution :
We know by Sine law in $$\Delta ABC\,\,{\text{as}}$$
$$\eqalign{ & \frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin \left( {\pi - A - B} \right)}} = 2R \cr & \Rightarrow \,\,\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin \left( {A + B} \right)}} = 2R \cr} $$
(a) If we know $$a, \sin A, \sin B$$    we can find $$b, c ;$$  values of $$\angle 's\,A,B$$   and $$C$$ all.
(b) Using $$a, b, c$$  we can find $$\angle A,\angle B,\angle C$$   using cosine law.
(c) $$a, \sin B, R$$   are given then $$\sin A, b$$   and hence sin$$(A + B)$$  and then $$C$$ can be found.
(d) If we know $$a, \sin A , R$$   then we know only the ratio $$\frac{b}{{\sin B}} = \frac{c}{{\sin \left( {A + B} \right)}};$$     we can not determine the values of $$b, c, \sin B, \sin C$$    separately.
$$∴ \Delta $$ can not be determined in this case.

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section