Question

Which of the following is/are correct ?

A. $$B'AB$$  is symmetric if $$A$$ is symmetric  
B. $$B'AB$$  is skew-symmetric if $$A$$ is symmetric
C. $$B'AB$$  is symmetric if $$A$$ is skew-symmetric
D. None of these
Answer :   $$B'AB$$  is symmetric if $$A$$ is symmetric
Solution :
Let $$A$$ be a symmetric matrix.
Then $$A' = A$$
Now, $$\left( {B'AB} \right)' = B'A'\left( {B'} \right)'.\left[ {\because \left( {AB} \right)' = B'A'} \right]$$
$$\eqalign{ & = B'A'B\left[ {\because \left( {B'} \right)' = B} \right] \cr & = B'AB\left[ {\because A' = A} \right] \cr} $$
⇒ $$B'AB$$  is a symmetric matrix. Now, let $$A$$ be a skew-symmetric matrix.
Then, $$A' = - A$$
$$\eqalign{ & \therefore \left( {B'AB} \right)' = B'A'\left( {B'} \right)'\left[ {\because \left( {AB} \right)' = B'A'} \right] \cr & = B'A'B\left[ {\because \left( {B'} \right)' = B} \right] \cr & = B'\left( { - A} \right)B\left[ {\because A' = - A} \right] \cr & = - B'AB \cr} $$
∴ $$B'AB$$  is a skew-symmetric matrix.

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section