Question

Which of the following functions is not differentiable at $$x = 1\,?$$

A. $$f\left( x \right) = \left( {{x^2} - 1} \right)\left| {\left( {x - 1} \right)\left( {x - 2} \right)} \right|$$
B. $$f\left( x \right) = \sin \left( {\left| {x - 1} \right|} \right) - \left| {x - 1} \right|$$
C. $$f\left( x \right) = \tan \left( {\left| {x - 1} \right|} \right) + \left| {x - 1} \right|$$  
D. none of these
Answer :   $$f\left( x \right) = \tan \left( {\left| {x - 1} \right|} \right) + \left| {x - 1} \right|$$
Solution :
$$\eqalign{ & f\left( x \right) = \left( {{x^2} - 1} \right)\left| {\left( {x - 1} \right)\left( {x - 2} \right)} \right| \cr & f'\left( {{1^ + }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {{{\left( {1 + h} \right)}^2} - 1} \right)\left| {h \cdot \left( {1 + h - 2} \right)} \right| - 0}}{h} = 0, \cr & f'\left( {{1^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {{{\left( {1 - h} \right)}^2} - 1} \right)\left| { - h \cdot \left( {1 - h - 2} \right)} \right| - 0}}{{ - h}} = 0 \cr & {\text{Hence, it is differentiable at }}x = 0 \cr & {\text{For, }}f\left( x \right) = \sin \left( {\left| {x - 1} \right|} \right) - \left| {x - 1} \right| \cr & f'\left( {{0^ + }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \,h - h - 0}}{h} = 0, \cr & f'\left( {{0^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \,\left| { - h} \right| - \left| { - h} \right|}}{{ - h}} = 0 = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \,h - h}}{{ - h}} = 0 \cr & {\text{Hence, }}f\left( x \right){\text{ is differentiable at }}x = 0 \cr & {\text{For }}f\left( x \right) = \tan \left( {\left| {x - 1} \right|} \right) + \left| {x - 1} \right| \cr & f'\left( {{0^ + }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\tan \,h + h - 0}}{h} = 2, \cr & f'\left( {{0^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\tan \,\left| { - h} \right| + \left| { - h} \right|}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \frac{{\tan \,h + h}}{{ - h}} = - 2 \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section