Question

Which of the following functions is differentiable at $$x = 0? $$

A. $$\cos \,\left( {\left| x \right|} \right) + \left| x \right|$$
B. $$\cos \,\left( {\left| x \right|} \right) - \left| x \right|$$
C. $$\sin \,\left( {\left| x \right|} \right) + \left| x \right|$$
D. $$\sin \,\left( {\left| x \right|} \right) - \left| x \right|$$  
Answer :   $$\sin \,\left( {\left| x \right|} \right) - \left| x \right|$$
Solution :
Let us test each of four options.
\[\begin{array}{l} \left( {\rm{A}} \right)f\left( x \right) = \cos \,\left( {\left| x \right|} \right) + \left| x \right| = \left\{ \begin{array}{l} \cos \,x - x,\,\,x < 0\\ \cos \,x + x,\,\,x \ge 0 \end{array} \right.\\ f'\left( x \right) = \left\{ \begin{array}{l} - \sin \,x - 1,\,x < 0\\ - \sin \,x + 1,\,\,x \ge 0 \end{array} \right.\\ {\rm{At}}\,{\rm{ }}x = 0,\,\,LD = - 1,\,\,RD = 1\\ \therefore {\rm{Not\,differentiable }}\\ \left( {\rm{B}} \right)f\left( x \right) = \cos \,\left| x \right| - \left| x \right| = \left\{ \begin{array}{l} \cos \,x + x,\,\,x < 0\\ \cos \,x - x,\,\,x \ge 0 \end{array} \right.\\ \therefore {\rm{Not\,differentiable\,at }}\,x = 0\\ \left( {\rm{C}} \right)f\left( x \right) = \sin \,\left| x \right| + \left| x \right| = \left\{ \begin{array}{l} - \sin \,x - x,\,\,x < 0\\ \sin \,x - x,\,\,x \ge 0 \end{array} \right.\\ \therefore {\rm{Not\,differentiable\,at }}\,x = 0\\ \left( {\rm{D}} \right)f\left( x \right) = \sin \,\left| x \right| - \left| x \right| = \left\{ \begin{array}{l} - \sin \,x + x,\,\,x < 0\\ \sin \,x - x,\,\,x \ge 0 \end{array} \right.\\ f'\left( x \right) = \left\{ \begin{array}{l} - \cos \,x - 1,\,\,x < 0\\ \cos \,x - 1,\,\,x \ge 0 \end{array} \right.\\ {\rm{At }}x = 0,\,\,LD = 0,\,\,RD = 0\,\\ \therefore f\,{\rm{ is\,differentiable\,at }}\,x = 0 \end{array}\]

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section