Question

Which of the following function is continuous at for all value of $$x\,?$$
$$\eqalign{ & \left( {\text{i}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {{x^3} - x} \right) \cr & \left( {{\text{ii}}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {2\,\cos \,x - 1} \right) \cr & \left( {{\text{iii}}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {{x^2} - 2x + 3} \right) \cr} $$

A. Only (i)
B. Only (iii)  
C. Both (ii) and (iii)
D. None of these
Answer :   Only (iii)
Solution :
$$\eqalign{ & \left( {\bf{i}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {{x^3} - x} \right) \cr & {\text{Here }}{x^3} - x = 0 \cr & \Rightarrow x = 0,\, - 1,\,1 \cr & {\text{Hence,}}\,f\left( x \right){\text{ is discontinuous at }}x = 0,\, - 1,\,1 \cr & \left( {{\bf{ii}}} \right)\,\,{\text{If }}f\left( x \right) = \operatorname{sgn} \left( {2\,\cos \,x - 1} \right) \cr & {\text{Here, }}2\,\cos \,x - 1 = 0 \cr & \Rightarrow \,\cos \,x = \frac{1}{2} \cr & \Rightarrow x = \,2n\pi + \left( {\frac{\pi }{3}} \right),\,n\, \in \,Z,\,{\text{where }}f\left( x \right){\text{ is discontinuous}}. \cr & \left( {{\bf{iii}}} \right)\,\,f\left( x \right) = \operatorname{sgn} \left( {{x^2} - 2x + 3} \right) \cr & {\text{Here,}}\,{x^2} - 2x + 3 > 0{\text{ for all }}x \cr & {\text{Thus, }}f\left( x \right) = 1{\text{ for all }}x \cr & {\text{Hence, continuous for all }}x. \cr} $$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section