Question

What is $$\mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {1 - \cos \,x} }}$$    equal to ?

A. $$\sqrt 2 $$
B. $$ - \sqrt 2 $$
C. $$\frac{1}{{\sqrt 2 }}$$
D. Limit does not exist  
Answer :   Limit does not exist
Solution :
$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {1 - \cos \,x} }} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {1 - \left( {1 - 2\,{{\sin }^2}\frac{x}{2}} \right)} }} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {2\,{{\sin }^2}\frac{x}{2}} }} \cr & = \frac{1}{2}\mathop {\lim }\limits_{x \to 0} \frac{x}{{\left| {\sin \frac{x}{2}} \right|}} \cr & {\text{L}}{\text{.H}}{\text{.L}}{\text{.}} = f\left( {0 - 0} \right) = \mathop {\lim }\limits_{h \to 0} \frac{x}{{\left| {\sin \frac{x}{2}} \right|}} \cr & = - \frac{1}{{\sqrt 2 }}\mathop {\lim }\limits_{x \to 0} \frac{{2\left( {\frac{h}{2}} \right)}}{{\sin \frac{h}{2}}} \cr & = \frac{1}{{\sqrt 2 }} \times 2 \times 1\,\,\,\left( {\because \,\mathop {\lim }\limits_{\theta \to 0} \frac{\theta }{{\sin \,\theta }} = 1} \right) \cr & = \sqrt 2 \cr & {\text{R}}{\text{.H}}{\text{.L}}{\text{.}} = f\left( {0 + 0} \right) = \mathop {\lim }\limits_{h \to 0} f\left( {0 + h} \right) \cr & = \frac{1}{{\sqrt 2 }}\mathop {\lim }\limits_{h \to 0} \frac{{2\left( {\frac{h}{2}} \right)}}{{\sin \frac{h}{2}}} \cr & = \frac{1}{{\sqrt 2 }} \times 2 \times 1 \cr & = \sqrt 2 \cr & {\text{L}}{\text{.H}}{\text{.L}}{\text{.}} \ne {\text{R}}{\text{.H}}{\text{.L}}{\text{.}} = \sqrt 2 \cr & {\text{Therefore limit does not exist}}{\text{.}} \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section