Question

What is the value of $$n$$ so that the angle between the lines having direction ratios $$\left( {1,\,1,\,1} \right)$$   and $$\left( {1,\, - 1,\,n} \right)$$   is $${60^ \circ }\,?$$

A. $$\sqrt 3 $$
B. $$\sqrt 6 $$  
C. $$3$$
D. None of these
Answer :   $$\sqrt 6 $$
Solution :
If $$\left( {{l_1},\,{m_1},\,{n_1}} \right)$$   and $$\left( {{l_2},\,{m_2},\,{n_2}} \right)$$   are the direction ratios then angle between the lines is
$$\eqalign{ & \cos \,q = \frac{{{l_1}{l_2} + {m_1}{m_2} + \,{n_1}{n_2}}}{{\sqrt {l_1^2 + m_1^2 + n_1^2} \,\sqrt {l_2^2 + m_2^2 + n_2^2} }} \cr & {\text{Here, }}{l_1} = 1,\,{m_1} = 1,\,{n_1} = 1\,{\text{and}} \cr & {l_2} = 1,\,{m_2} = - 1,\,{n_2} = n{\text{ and }}q = {60^ \circ } \cr & \therefore \,\cos \,{60^ \circ } = \frac{{1 \times 1 + 1 \times \left( { - 1} \right) + 1 \times n}}{{\sqrt {{1^2} + {1^2} + {1^2}} \times \sqrt {{1^2} + {1^2} + {n^2}} }} \cr & \Rightarrow \frac{1}{2} = \frac{n}{{\sqrt 3 \sqrt {2 + {n^2}} }} \cr & \Rightarrow {n^2} = 6 \cr & \Rightarrow n = \pm \sqrt 6 \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section