Question

What is the value of $$k$$ for which the following function $$f\left( x \right)$$  is continuous for all $$x\,?$$
\[f\left( x \right) = \left\{ \begin{array}{l} \frac{{{x^3} - 3x + 2}}{{{{\left( {x - 1} \right)}^2}}},{\rm{ for\,\, }}x \ne 1\\ \,\,\,\,\,\,\,\,k,\,\,\,\,\,\,\,\,{\rm{ for\,\, }}x = 1 \end{array} \right.\]

A. $$3$$  
B. $$2$$
C. $$1$$
D. $$ - 1$$
Answer :   $$3$$
Solution :
Let \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{{x^3} - 3x + 2}}{{{{\left( {x - 1} \right)}^2}}},{\rm{ }}\forall {\rm{ }}x \ne 1\\ \,\,\,\,\,\,\,\,k,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{ }}\forall {\rm{ }}x = 1 \end{array} \right.\]     and $$f\left( x \right)$$  is continuous.
$$\eqalign{ & \therefore \mathop {\lim }\limits_{x \to 1} f\left( x \right) = k \cr & \Rightarrow \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 3x + 2}}{{{{\left( {x - 1} \right)}^2}}} = k \cr & \Rightarrow k = \mathop {\lim }\limits_{x \to 1} \frac{{3{x^2} - 3}}{{2\left( {x - 1} \right)}}\,\,\,\,\,\,\,\,\,\left[ {{\text{By L'Hospital rule}}} \right] \cr & \Rightarrow k = \mathop {\lim }\limits_{x \to 1} \frac{{6x}}{2}\,\,\,\,\,\,\,\,\left[ {{\text{By L'Hospital rule}}} \right] \cr & \Rightarrow k = 3 \cr} $$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section