Question

What is the value of $$\left( {1 + \cos \frac{\pi }{8}} \right)\left( {1 + \cos \frac{{3\pi }}{8}} \right)\left( {1 + \cos \frac{{5\pi }}{8}} \right)\left( {1 + \cos \frac{{7\pi }}{8}} \right)?$$

A. $$\frac{1}{2}$$
B. $$\frac{1}{2} + \frac{1}{{2\sqrt 2 }}$$
C. $$\frac{1}{2} - \frac{1}{{2\sqrt 2 }}$$
D. $$\frac{1}{8}$$  
Answer :   $$\frac{1}{8}$$
Solution :
$$\left[ {1 + \cos \frac{\pi }{8}} \right]\left[ {1 + \cos \frac{{3\pi }}{8}} \right]\left[ {1 + \cos \frac{{5\pi }}{8}} \right]\left[ {1 + \frac{{\cos 7\pi }}{8}} \right]$$
We have,
$$\eqalign{ & \cos \frac{{7\pi }}{8} = \cos \left[ {\pi - \frac{\pi }{8}} \right] = - \cos \frac{\pi }{8}\,{\text{and}}\,\,{{\cos}}\frac{{5\pi }}{8} = \cos \left[ {\pi - \frac{{3\pi }}{8}} \right] = - \cos \frac{{3\pi }}{8} \cr & \therefore \left[ {1 + \cos \frac{\pi }{8}} \right]\left[ {1 + \cos \frac{{3\pi }}{8}} \right]\left[ {1 - \cos \frac{\pi }{8}} \right]\left[ {1 - \cos \frac{{3\pi }}{8}} \right] \cr & = \left[ {1 - {{\cos }^2}\frac{\pi }{8}} \right]\left[ {1 - {{\cos }^2}\frac{{3\pi }}{8}} \right] = {\sin ^2}\frac{\pi }{8} \cdot {\sin ^2}\frac{{3\pi }}{8} \cr & = \frac{1}{4}\left[ {2\,{{\sin }^2}\frac{\pi }{8} \cdot 2\,{{\sin }^2}\frac{{3\pi }}{8}} \right] \cr & = \frac{1}{4}\left[ {\left( {1 - \cos \frac{\pi }{4}} \right)\left( {1 - \cos \frac{{3\pi }}{4}} \right)} \right]\,\,\,\,\,\,\,\,\,\left( {\because 1 - \cos \theta = 2\,{{\sin }^2}\frac{\theta }{2}} \right) \cr & = \frac{1}{4}\left[ {\left( {1 - \frac{1}{{\sqrt 2 }}} \right)\left( {1 + \frac{1}{{\sqrt 2 }}} \right)} \right] = \frac{1}{8} \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section