Question

What is the set of all points, where the function $$f\left( x \right) = \frac{x}{{1 + \left| x \right|}}$$    is differentiable ?

A. $$\left( { - \infty ,\,\infty } \right){\text{ only}}$$  
B. $$\left( {0,\,\infty } \right){\text{ only}}$$
C. $$\left( { - \infty ,\,0 } \right) \cup \left( {0,\,\infty } \right){\text{ only}}$$
D. $$\left( { - \infty ,\,0} \right){\text{ only}}$$
Answer :   $$\left( { - \infty ,\,\infty } \right){\text{ only}}$$
Solution :
Given $$f\left( x \right) = \frac{x}{{1 + \left| x \right|}}$$
\[ = \left\{ \begin{array}{l} \frac{x}{{1 - x}},\,\,\,\,x < 0\\ \frac{x}{{1 + x}},\,\,\,\,x \ge 0 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\,\because\left| x \right| = \left\{ \begin{array}{l} \,\,\,x\,\,\,\,{\rm{if}}\,x \ge 0\\ - x\,\,\,\,{\rm{if}}\,x < 0 \end{array} \right.} \right)\]
$$\eqalign{ & \therefore {\text{ L}}{\text{.H}}{\text{.D}}{\text{.}} = f'\left( {{0^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( { - h} \right) - f\left( 0 \right)}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\frac{{ - h}}{{1 + \left| { - h} \right|}} - 0}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\frac{{ - h}}{{1 + h}} - 0}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{1}{{1 + h}} \cr & = 1 \cr & {\text{and R}}{\text{.H}}{\text{.D}}{\text{.}} = f'\left( {{0^ + }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\frac{h}{{1 + h}} - 0}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{1}{{1 + h}} \cr & = 1 \cr & {\text{Since, L}}{\text{.H}}{\text{.D}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.D}}{\text{.}} \cr & \therefore \,f\left( x \right){\text{ is differentiable at }}x = 0 \cr & {\text{Hence, }}f\left( x \right){\text{ is differentiable in }}\left( { - \infty ,\,\infty } \right){\text{. }} \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section