Question

What is the area under the curve $$y = \left| x \right| + \left| {x - 1} \right|$$    between $$x = 0$$  and $$x = 1\,?$$

A. $$\frac{1}{2}$$
B. $$1$$  
C. $$\frac{3}{2}$$
D. $$2$$
Answer :   $$1$$
Solution :
$$\eqalign{ & \left| x \right|\,{\text{for }}x \geqslant 0 \cr & = x{\text{ and }}\left| {x - 1} \right|{\text{ for }}x \leqslant 1 = - \left( {x - 1} \right), \cr & {\text{So, }}\int_0^1 {\left( {\left| x \right| + \left| {x - 11} \right|} \right)} = {\text{required area}} \cr & a = \int_0^1 {x\,dx} - \int_0^1 {\left( {x - 1} \right)dx} \cr & \,\,\,\,\, = \left[ {\frac{{{x^2}}}{2}} \right]_0^1 - \left[ {\frac{{{x^2}}}{2} - x} \right]_0^1 \cr & \,\,\,\,\, = \frac{1}{2} - \left( {\frac{1}{2} - 1} \right) \cr & \,\,\,\,\, = 1{\text{ sq}}{\text{. unit}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section