Solution :
Diagonal $${d_1},\,\,\overrightarrow {AC} = 3\hat i + \hat j - 2\hat k$$
Diagonal $${d_2},\,\,\overrightarrow {BD} = \hat i - 3\hat j + 4\hat k$$

Area of parallelogram is $$\frac{1}{2}\left| {\overrightarrow {{d_1}} \times \overrightarrow {{d_2}} } \right|$$
Hence area \[ = \frac{1}{2}\left| \begin{array}{l}
\hat i\,\,\,\,\,\,\,\,\,\,\hat j\,\,\,\,\,\,\,\,\,\hat k\\
3\,\,\,\,\,\,\,\,\,\,1\,\, - 2\\
1\,\, - 3\,\,\,\,\,\,\,\,\,4
\end{array} \right|\]
$$\eqalign{
& = \frac{1}{2}\left| {\left[ {\hat i\left( {4 - 6} \right) - \hat j\left( {12 + 2} \right) + \hat k\left( { - 9 - 1} \right)} \right]} \right| \cr
& = \frac{1}{2}\left| { - 2\hat i - 14\hat j - 10\hat k} \right| \cr
& = \frac{1}{2}\sqrt {4 + 196 + 100} \cr
& = \frac{{10\sqrt 3 }}{2} \cr
& = 5\sqrt 3 {\text{ square units}} \cr} $$