Question
      
        What is the area of the largest rectangular field which can be enclosed with $$200\,m$$  of fencing ?      
       A.
        $$1600\,{m^2}$$              
       B.
        $$2100\,{m^2}$$              
       C.
        $$2400\,{m^2}$$              
       D.
        $$2500\,{m^2}$$                 
              
            
                Answer :  
        $$2500\,{m^2}$$      
             Solution :
        Let length and breadth of rectangular field be $$x$$ and $$y$$ respectively
$$\therefore \,2\left( {x + y} \right) = 200 \Rightarrow y = 100 - x$$
and area $$A = xy = x\left( {100 - x} \right)$$
$$\because \,\frac{{dA}}{{dx}} = 100 - 2x$$
Put $$\frac{{dA}}{{dx}} = 0$$   for maxima or minima
$$\eqalign{
  & 100 - 2x = 0  \cr 
  &  \Rightarrow x = 50\,\,\, \Rightarrow y = 50 \cr} $$
Now, $$\frac{{{d^2}A}}{{d{x^2}}} =  - 2 < 0,$$    which shows maximum, independent of values of $$x$$ and $$y,$$ but only when they are equal.
$$\therefore \,A$$  is maximum at $$x = 50$$
Hence, required area $$ = 50\left( {100 - 50} \right) = 50 \times 50 = 2500\,{m^2}$$