Question

What is the area enclosed by the equation $${x^2} + {y^2} = 2\,?$$

A. $$4\pi $$  square units
B. $$2\pi $$  square units  
C. $$4{\pi ^2}$$  square units
D. $$4$$ square units
Answer :   $$2\pi $$  square units
Solution :
Given equation of circle is $${x^2} + {y^2} = 2 \Rightarrow y = \sqrt {2 - {x^2}} $$
Application of Integration mcq solution image
Required area $$ = 4 \times $$  Area of shaded portion
$$\eqalign{ & = 4\int_0^{\sqrt 2 } {\sqrt {2 - {x^2}} } dx \cr & = 4\left[ {\frac{x}{2}\sqrt {2 - {x^2}} + \frac{2}{2}{{\sin }^{ - 1}}\frac{x}{{\sqrt 2 }}} \right]_0^{\sqrt 2 } \cr & = 4\left[ {{{\sin }^{ - 1}}\frac{{\sqrt 2 }}{{\sqrt 2 }}} \right] \cr & = 4\,{\sin ^{ - 1}}1 \cr & = 4 \times \frac{\pi }{2} \cr & = 2\pi {\text{ sq}}{\text{. units}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section