Question
      
        What is the area bounded by the curves $$y = {e^x},\,y = {e^{ - x}}$$    and the straight line $$x = 1\,?$$      
       A.
        $$\left( {e + \frac{1}{e}} \right)\,{\text{square}}\,{\text{unit}}$$              
       B.
        $$\left( {e - \frac{1}{e}} \right)\,{\text{square}}\,{\text{unit}}$$              
       C.
        $$\left( {e + \frac{1}{e} - 2} \right)\,{\text{square}}\,{\text{unit}}$$                 
              
       D.
        $$\left( {e - \frac{1}{e} - 2} \right)\,{\text{square}}\,{\text{unit}}$$              
            
                Answer :  
        $$\left( {e + \frac{1}{e} - 2} \right)\,{\text{square}}\,{\text{unit}}$$      
             Solution :
        Given equations of curves are $$y = {e^x}{\text{ and }}y = {e^{ - x}}$$
$$ \Rightarrow {e^x} = \frac{1}{{{e^x}}}\,\, \Rightarrow {e^{2x}} = {e^0}\,\, \Rightarrow x = 0$$
Also, equation of straight line gives $$x = 1$$
$$\therefore $$  Required area
$$\eqalign{
  &  = \int\limits_0^1 {\left( {{e^x} - {e^{ - x}}} \right)dx}   \cr 
  &  = \left[ {{e^x} + {e^{ - x}}} \right]_0^1  \cr 
  &  = e + {e^{ - 1}} - {e^0} + {e^{ - 0}}  \cr 
  &  = \left( {e + \frac{1}{e} - 2} \right){\text{ sq}}{\text{. unit}} \cr} $$