Question

What is the area bounded by the curve $$y = 4x - {x^2} - 3$$    and the $$x$$-axis ?

A. $$\frac{2}{3}{\text{ sq}}{\text{. unit}}$$
B. $$\frac{4}{3}{\text{ sq}}{\text{. unit}}$$  
C. $$\frac{5}{3}{\text{ sq}}{\text{. unit}}$$
D. $$\frac{4}{5}{\text{ sq}}{\text{. unit}}$$
Answer :   $$\frac{4}{3}{\text{ sq}}{\text{. unit}}$$
Solution :
Given curve is $$y = 4x - {x^2} - 3$$
Since, area bounded by $$x$$-axis   $$\therefore \,y = 0$$
$$\eqalign{ & \Rightarrow 4x - {x^2} - 3 = 0 \cr & \Rightarrow {x^2} - 4x + 3 = 0 \cr & \Rightarrow {x^2} - 3x - x + 3 = 0 \cr & \Rightarrow \left( {x - 3} \right)\left( {x - 1} \right) = 0 \cr & \Rightarrow x = 1,\,3 \cr} $$
$$\therefore $$  Required area
$$\eqalign{ & = \int_1^3 {\left( {4x - {x^2} - 3} \right)dx} \cr & = \left. {\frac{{4{x^2}}}{2} - \frac{{{x^3}}}{3} - 3x} \right|_1^3 \cr & = \left( {\frac{{36}}{2} - \frac{{27}}{3} - 9} \right) - \left( {\frac{4}{2} - \frac{1}{3} - 3} \right) \cr & = \left( {18 - 9 - 9} \right) - \left( {2 - \frac{{10}}{3}} \right) \cr & = 0 - \left( {\frac{{ - 4}}{3}} \right) \cr & = \frac{4}{3}{\text{ sq}}{\text{. unit}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section