Question

What is a vector of unit length orthogonal to both the vectors $$\hat i + \hat j + \hat k$$    and $$2\hat i + 3\hat j - \hat k\,?$$

A. $$\frac{{ - 4\hat i + 3\hat j - \hat k}}{{\sqrt {26} }}$$
B. $$\frac{{ - 4\hat i + 3\hat j + \hat k}}{{\sqrt {26} }}$$  
C. $$\frac{{ - 3\hat i + 2\hat j - \hat k}}{{\sqrt {14} }}$$
D. $$\frac{{ - 3\hat i + 2\hat j + \hat k}}{{\sqrt {14} }}$$
Answer :   $$\frac{{ - 4\hat i + 3\hat j + \hat k}}{{\sqrt {26} }}$$
Solution :
\[\begin{array}{l} \overrightarrow A = \hat i + \hat j + \hat k\\ \overrightarrow B = 2\hat i + 3\hat j - \hat k\\ \overrightarrow A \times \overrightarrow B = \left| \begin{array}{l} \hat i\,\,\,\,\hat j\,\,\,\,\,\,\,\,\hat k\\ 1\,\,\,\,\,1\,\,\,\,\,\,\,\,1\\ 2\,\,\,\,3\,\, - 1 \end{array} \right|\\ = \hat i\left( { - 1 - 3} \right) - \hat j\left( { - 1 - 2} \right) + \hat k\left( {3 - 2} \right)\\ = - 4\hat i + 3\hat j + \hat k \end{array}\]
Vector of unit length orthogonal to both the vectors $$\overrightarrow A $$ and $$\overrightarrow B $$
$$\eqalign{ & = \frac{{\overrightarrow A \times \overrightarrow B }}{{\left| {\overrightarrow A \times \overrightarrow B } \right|}} \cr & = \frac{{ - 4\hat i + 3\hat j + \hat k}}{{\sqrt {16 + 9 + 1} }} \cr & = \frac{{ - 4\hat i + 3\hat j + \hat k}}{{\sqrt {26} }} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section