Question

What is $$\frac{{1 - \tan {2^ \circ }\cot {{62}^ \circ }}}{{\tan {{152}^ \circ } - \cot {{88}^ \circ }}}$$     equal to ?

A. $$ \sqrt 3 $$
B. $$ - \sqrt 3 $$  
C. $$ {\sqrt 2} - 1$$
D. $$1 - \sqrt 2 $$
Answer :   $$ - \sqrt 3 $$
Solution :
$$\eqalign{ & L = \frac{{1 - \tan {2^ \circ }\cot {{62}^ \circ }}}{{\tan {{152}^ \circ } - \cot {{88}^ \circ }}} = \frac{{1 - \tan {2^ \circ }\cot {{\left( {90 - 28} \right)}^ \circ }}}{{\tan {{\left( {180 - 28} \right)}^ \circ } - \cot {{\left( {90 - 2} \right)}^ \circ }}} \cr & \Rightarrow L = \frac{{1 - \tan {2^ \circ }\tan {{28}^ \circ }}}{{ - \tan {{28}^ \circ } - \tan {2^ \circ }}} = - \left[ {\frac{{1 - \tan {2^ \circ }\tan {{28}^ \circ }}}{{\tan {2^ \circ } + \tan {{28}^ \circ }}}} \right] \cr & \Rightarrow L = - \frac{1}{{\tan {{\left( {2 + 28} \right)}^ \circ }}} = - \frac{1}{{\tan {{30}^ \circ }}} = - \sqrt 3 \,\,\,\,\left[ {\because \tan \left( {A + B} \right) = \frac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right] \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section