Question

What are the values of $$k$$ if the term independent of $$x$$ in the expansion of $${\left( {\sqrt x + \frac{k}{{{x^2}}}} \right)^{10}}\,$$   is 405 ?

A. $$ \pm 3$$  
B. $$ \pm 6$$
C. $$ \pm 5$$
D. $$ \pm 4$$
Answer :   $$ \pm 3$$
Solution :
Given expansion is $${\left( {\sqrt x + \frac{k}{{{x^2}}}} \right)^{10}}$$
$$\eqalign{ & {\left( {r + 1} \right)_{th}}\,{\text{term}},\,{T_{r + 1}} = {\,^{10}}{C_r}{\left( {\sqrt x } \right)^{10 - r}}{\left( {\frac{k}{{{x^2}}}} \right)^r} \cr & \Rightarrow \,{T_{r + 1}} = {\,^{10}}{C_r}{x^{\frac{{5 - r}}{2}}} \cdot {\left( k \right)^r} \cdot {x^{ - 2r}} \cr & \therefore \,{T_{r + 1}} = {\,^{10}}{C_r}{x^{\frac{{\left( {10 - 5r} \right)}}{2}}}{\left( k \right)^r} \cr} $$
Since, $${T_{r + 1}}$$  is independent of $$x$$
$$\eqalign{ & \therefore \,\frac{{10 - 5r}}{2} = 0 \cr & \Rightarrow \,r = 2 \cr & \therefore 405 = {\,^{10}}{C_2}{\left( k \right)^2} \cr & 405 = 45 \times {k^2} \cr & \Rightarrow \,{k^2} = 9 \cr & \Rightarrow \,k = \pm \,3 \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section