Question
What are coordinates of the point equidistant from the points $$\left( {a,\,0,\,0} \right),\,\left( {0,\,a,\,0} \right),\,\left( {0,\,0,\,a} \right)$$ and $$\left( {0,\,0,\,0} \right)\,?$$
A.
$$\left( {\frac{a}{3},\,\frac{a}{3},\,\frac{a}{3}} \right)$$
B.
$$\left( {\frac{a}{2},\,\frac{a}{2},\,\frac{a}{2}} \right)$$
C.
$$\left( {a,\,a,\,a} \right)$$
D.
$$\left( {2a,\,2a,\,2a} \right)$$
Answer :
$$\left( {\frac{a}{2},\,\frac{a}{2},\,\frac{a}{2}} \right)$$
Solution :
Let the point $$A\left( {x,\,y,\,z} \right)$$ is equidistant from the points $$B\left( {a,\,0,\,0} \right),\,C\left( {0,\,a,\,0} \right),\,D\left( {0,\,0,\,a} \right)$$ and $$E\left( {0,\,0,\,0} \right).$$
$$\eqalign{
& {\text{Hence,}} \cr
& \Rightarrow {\left( {x - a} \right)^2} + {y^2} + {z^2} = {x^2} + {\left( {y - a} \right)^2} + {z^2} \cr
& \Rightarrow {\left( {x - a} \right)^2} + {y^2} + {z^2} = {x^2} + {y^2} + {\left( {z - a} \right)^2} \cr
& \Rightarrow {\left( {x - a} \right)^2} + {y^2} + {z^2} = {x^2} + {y^2} + {z^2} \cr
& \Rightarrow {\left( {x - a} \right)^2} + {y^2} + {z^2} = {x^2} + {\left( {y - a} \right)^2} + {z^2} \cr
& \Rightarrow {x^2} + {a^2} - 2ax + {y^2} + {z^2} = {x^2} + {y^2} + {a^2} - 2ay + {z^2} \cr
& \Rightarrow - 2ax = - 2ay \cr
& \Rightarrow ax = ay \cr
& \Rightarrow x = y \cr
& {\text{Similarly,}} \cr
& ay = az \cr
& \Rightarrow y = z \cr
& \Rightarrow x = y = z \cr
& \therefore \,{\left( {x - a} \right)^2} + {x^2} + {x^2} = {x^2} + {x^2} + {x^2} \cr
& \Rightarrow {x^2} + {a^2} - 2ax + {x^2} + {x^2} = 3{x^2} \cr
& \Rightarrow {a^2} = 2ax \cr
& \Rightarrow x = \frac{a}{2} \cr
& \therefore \,{\text{Point is }}\left( {\frac{a}{2},\,\frac{a}{2},\,\frac{a}{2}} \right) \cr} $$