Question

What are coordinates of the point equidistant from the points $$\left( {a,\,0,\,0} \right),\,\left( {0,\,a,\,0} \right),\,\left( {0,\,0,\,a} \right)$$       and $$\left( {0,\,0,\,0} \right)\,?$$

A. $$\left( {\frac{a}{3},\,\frac{a}{3},\,\frac{a}{3}} \right)$$
B. $$\left( {\frac{a}{2},\,\frac{a}{2},\,\frac{a}{2}} \right)$$  
C. $$\left( {a,\,a,\,a} \right)$$
D. $$\left( {2a,\,2a,\,2a} \right)$$
Answer :   $$\left( {\frac{a}{2},\,\frac{a}{2},\,\frac{a}{2}} \right)$$
Solution :
Let the point $$A\left( {x,\,y,\,z} \right)$$   is equidistant from the points $$B\left( {a,\,0,\,0} \right),\,C\left( {0,\,a,\,0} \right),\,D\left( {0,\,0,\,a} \right)$$       and $$E\left( {0,\,0,\,0} \right).$$
$$\eqalign{ & {\text{Hence,}} \cr & \Rightarrow {\left( {x - a} \right)^2} + {y^2} + {z^2} = {x^2} + {\left( {y - a} \right)^2} + {z^2} \cr & \Rightarrow {\left( {x - a} \right)^2} + {y^2} + {z^2} = {x^2} + {y^2} + {\left( {z - a} \right)^2} \cr & \Rightarrow {\left( {x - a} \right)^2} + {y^2} + {z^2} = {x^2} + {y^2} + {z^2} \cr & \Rightarrow {\left( {x - a} \right)^2} + {y^2} + {z^2} = {x^2} + {\left( {y - a} \right)^2} + {z^2} \cr & \Rightarrow {x^2} + {a^2} - 2ax + {y^2} + {z^2} = {x^2} + {y^2} + {a^2} - 2ay + {z^2} \cr & \Rightarrow - 2ax = - 2ay \cr & \Rightarrow ax = ay \cr & \Rightarrow x = y \cr & {\text{Similarly,}} \cr & ay = az \cr & \Rightarrow y = z \cr & \Rightarrow x = y = z \cr & \therefore \,{\left( {x - a} \right)^2} + {x^2} + {x^2} = {x^2} + {x^2} + {x^2} \cr & \Rightarrow {x^2} + {a^2} - 2ax + {x^2} + {x^2} = 3{x^2} \cr & \Rightarrow {a^2} = 2ax \cr & \Rightarrow x = \frac{a}{2} \cr & \therefore \,{\text{Point is }}\left( {\frac{a}{2},\,\frac{a}{2},\,\frac{a}{2}} \right) \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section