Question

Vertices of a variable triangle are $$\left( {3,\,4} \right),\,\left( {5\,\cos \,\theta ,\,5\,\sin \,\theta } \right)$$     and $$\left( {5\,\sin \,\theta ,\, - 5\,\cos \,\theta } \right),$$     where $$\theta \, \in \,R.$$  Locus of it's orthocentre is :

A. $${\left( {x + y - 1} \right)^2} + {\left( {x - y - 7} \right)^{^2}} = 100$$
B. $${\left( {x + y - 7} \right)^2} + {\left( {x - y - 1} \right)^{^2}} = 100$$
C. $${\left( {x + y - 7} \right)^2} + {\left( {x + y - 1} \right)^{^2}} = 100$$
D. $${\left( {x + y - 7} \right)^2} + {\left( {x - y + 1} \right)^{^2}} = 100$$  
Answer :   $${\left( {x + y - 7} \right)^2} + {\left( {x - y + 1} \right)^{^2}} = 100$$
Solution :
Distance of all the points from $$\left( {0,\,0} \right)$$  are $$5$$ unit. That means circumcentre of the triangle formed by the given point is $$\left( {0,\,0} \right).$$  If $$G\left( {h,\,k} \right)$$   be the centroid of triangle, then
$$3h = 3 + 5\left( {\cos \,\theta + \sin \,\theta } \right),\,3k = 4 + 5\left( {\sin \,\theta - \cos \,\theta } \right)$$
If $$H\left( {\alpha ,\,\beta } \right)$$   be the orthocentre, then
$$\eqalign{ & OG:GH = 1:2\, \Rightarrow \alpha = 3h,\,\,\beta = 3k \cr & \cos \,\theta + \sin \,\theta = \frac{{\alpha - 3}}{5},\,\sin \theta - \cos \,\theta = \frac{{\beta - 4}}{5} \cr & \Rightarrow \sin \,\theta = \frac{{\alpha + \beta - 7}}{{10}},\,\,\cos \,\theta = \frac{{\alpha - \beta + 1}}{{10}} \cr} $$
Thus, locus of $$\left( {\alpha ,\,\beta } \right)$$  is $${\left( {x + y - 7} \right)^2} + {\left( {x - y + 1} \right)^{^2}} = 100.$$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section