Question

Under which one of the following conditions does the solution of $$\frac{{dy}}{{dx}} = \frac{{ax + b}}{{cy + d}}$$    represent a parabola ?

A. $$a = 0,\,c = 0$$
B. $$a = 1,\,b = 2,\,c \ne 0$$
C. $$a = 0,\,c \ne 0,\,b \ne 0$$  
D. $$a = 1,\,c = 1$$
Answer :   $$a = 0,\,c \ne 0,\,b \ne 0$$
Solution :
Given : $$\frac{{dy}}{{dx}} = \frac{{ax + b}}{{cy + d}}$$
or, $$\left( {cy + d} \right)dy = \left( {ax + b} \right)dx$$
Integrating both the sides.
$$\eqalign{ & c.\int {y\,dy + d} \int {dy = a} \int {x\,dx + b} \int {dx + K} \,\,\,\,\,\,\left[ {K{\text{ is constant integration}}} \right] \cr & {\text{or, }}c.\frac{{{y^2}}}{2} + d.y = a\frac{{{x^2}}}{2} + b.x + K \cr & {\text{or, }}c{y^2} + 2d.y = a{x^2} + 2b.x + 2K \cr} $$
This equation will represent a parabola when either, the coefficient of $${x^2}$$ or the coefficient of $${y^2}$$ is zero, but not both.
Thus either $$c = 0$$  or $$a = 0$$  but not both.
From the choice given $$a = 0,\,c \ne 0{\text{ and }}\,b \ne 0$$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section