Question

Two vertices of an equilateral triangle are $$\left( { - 1,\,0} \right)$$  and $$\left( {1,\,0} \right)$$  and its third vertex lies above the $$x$$-axis. The equation of the circumcircle of the triangle is :

A. $${x^2} + {y^2} = 1$$
B. $$\sqrt 3 \left( {{x^2} + {y^2}} \right) + 2y - \sqrt 3 = 0$$
C. $$\sqrt 3 \left( {{x^2} + {y^2}} \right) - 2y - \sqrt 3 = 0$$  
D. none of these
Answer :   $$\sqrt 3 \left( {{x^2} + {y^2}} \right) - 2y - \sqrt 3 = 0$$
Solution :
Circle mcq solution image
The circumcentre $$C$$ is the centroid for an equilateral triangle.
$$\therefore \,C = \left( {0,\,\frac{1}{{\sqrt 3 }}} \right)$$    and radius $$ = \frac{2}{3}.\sqrt 3 .$$
So, the circumcircle is $${\left( {x - 0} \right)^2} + {\left( {y - \frac{1}{{\sqrt 3 }}} \right)^2} = {\left( {\frac{2}{3}.\sqrt 3 } \right)^2}$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section