Question

Two system of rectangular axes have the same origin. If a plane cuts them at distances $$a,\,b,\,c$$  and $$a',\,b',\,c'$$   respectively from the origin, then $$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = k\left( {\frac{1}{{a{'^2}}} + \frac{1}{{b{'^2}}} + \frac{1}{{c{'^2}}}} \right),$$         where $$k$$ is equal to :

A. $$1$$  
B. $$2$$
C. $$4$$
D. None of these
Answer :   $$1$$
Solution :
Let $$a,\,b,\,c$$  be the intercepts when $$Ox,\,Oy,\,Oz$$    are taken as axes, then the equation of the plane is
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1......\left( {\text{i}} \right)$$
Let $$a,\,b,\,c$$  be the intercepts when $$\left( {OX,\,OY,\,OZ} \right)$$    are taken as axes; then in this case equation of the same plane is
$$\frac{X}{a} + \frac{X}{b} + \frac{X}{c} = 1......\left( {\text{ii}} \right)$$
Now, equations $$\left( {\text{i}} \right)$$ and $$\left( {\text{ii}} \right)$$ are equations of the same plane and in both the cases the origin is same.
Hence, length of the perpendicular drawn from the origin to the plane in both the case must be the same
$$\eqalign{ & \therefore \,\frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{a{'^2}}} + \frac{1}{{b{'^2}}} + \frac{1}{{c{'^2}}}} }} \cr & \Rightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{1}{{a{'^2}}} + \frac{1}{{b{'^2}}} + \frac{1}{{c{'^2}}} \cr & \therefore \,k = 1 \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section